Supplemental Data


All of these experimental plants were exposed to Agnihotra vapours of polished rice grains.

After one month exposure

Observation: New growth was observed in plants kept in the narrow bottles and the plant kept in the soil.

Supplemental Data

No new areal growth was observed in wide mouthed bottles and had long taproots (A and B). New growth was seen in the plant kept in the soil (C), which had fibrous roots.

Growth was seen in the plant kept in the soil and the plants kept in the narrow mouthed bottles. Along wit hnew growth yellowing of the leaves (signs of senescence) was also observed.

Results and Discussion

These are the observations made in the month of March 2013. The studies conducted during last three years (which have been already sent) have conclusively been proved by these fresh observations.

Since the narrow bottles and plant in the soil do not allow much Agnihotra vapour to percolate in the water less roots are produced. The leaves also absorb the vapours. When the balance is shifted towards the production of growth hormone in the leaf, new areal growth is produced. Agnihotra has profound impact on the root-shoot balance.

This also explains the production of long roots during the monsoon period when no areal growth was observed despite enough light. A substance dissolving in atmospheric vapour was causing such changes. These effects were more profound with the use of unpolished rice grains.

The new growth was produced only in presence of Agnihotra vapour produced by polished grains. The result on a control plant was sent in the earlier mail in February.

My experiments conclusively point towards enough evidence of possible role of Agnihotra vapour in production of growth regulator substances in plants. Probably the growth regulators produced by unpolished grains tilt the balance towards root growth, while polished grain vapour has more roles to play in the shoot production.

Ash has not been taken in these experiments to have more clarity of the role of vapour for plant growth.

Visit us @ www.vedicjournals.com : DOI: http://dx.doi.org/10.14259/as.v1i1.101