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Abstract
Benign and malignant mammary neoplasias are common in women and domestic dogs and cats. Dogs and cats share (more so than 
rodent models) many of the risk factors, including increased incidence with age, for spontaneous mammary neoplasia. Dogs are 
affected by both benign and malignant types of tumors while in cats malignant neoplasms are the most common. Human mammary 
neoplasia is characterized by altered lipid metabolism. For example, the expression of fatty acid synthase (named oncogene antigen, 
OA 519) was identified as a marker for aggressive human breast cancer more than two decades ago. Considering lipogenesis is 
enhanced in breast and other types of cancer, many have suggested on the need to develop inhibitors of selected steps along the 
lipogenetic pathway as targets for chemotherapy. Several such agents are at different phases of development. The objective of this 
review is to provide an overview of lipid synthesis in normal and neoplastic mammary glands and potential chemotherapeutic targets 
affecting lipid metabolism. We conclude by suggesting the use of dogs and cats as animal models may hasten the development of 
therapeutic approaches.

Introduction

Lipid Metabolism in Mammary Neoplasia and Potential 
Therapeutic Targets

Benign and malignant mammary neoplasias are common in 
women and female companion animals. In USA alone, each 
year, 290,000 new cases of breast cancer are diagnosed and 
about 40,000 women and men die of the disease. It is the 
second leading cause of death (after lung cancer)  in women [1].  
Among domestic animals, mammary neoplasia is most prevalent 
in dogs and cats. The incidence of mammary neoplasia in dogs 
can be as high as 200 cases/100,000 per year [2], rate similar to 
humans [1]. The age-adjusted incidence a rate simlilar to 
"humans" of mammary neoplasia in female and male dogs  is 3x 
and 16x that of women and men, respectively [3]. In dogs, most 
of the neoplasia (~55%) is benign while in cats, similar to 
human, most of the pathology (>80%) involves invasive tumors 
[4,5]. 

VRI Cell Signaling, Volume 1, Issue 2, October 2013

The occurrence of spontaneous mammary neoplasia increases 
as the animal ages, and other similarities in the pathophysiology 
of the tumors between dogs and cats, and humans have led to 
the consideration of dogs and cats as valuable models (more 
appropriate than rodents, where the mammary tumors are 
induced) to study human breast cancer and develop therapeutic 
approaches [6-8].  

One of the emerging hallmarks of cancer are alteration in 
metabolism [9-11]. Compared to quiescent tissues, neoplastic 
cells are characterized by an increased rate of glycolysis. There 
are also marked changes in lipid metabolism due to increased 
demand for cell components such as membranes. In most 
cancer cells, both lipid catabolism and anabolism are 
upregulated [12,13].  The need for membrane phospholipid 
bilayer is fulfilled mainly from de novo lipogenesis (DNL) and 
not from plasma or dietary lipids [9].  In fact, fatty acid synthase 
(FAS) a key enzyme in DNL has been identified in the blood as 
a marker for invasive breast cancer in women [14,15].  Lipid 
metabolism related genes are also significantly upregulated in 
canine mammary tumors that are aggressive [8].  Thus, targeting 
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DNL has the potential to interfere with ability of neoplastic cells 
to proliferate by disabling their membrane generating ability. 
Many in vitro studies have shown that DNL inhibitors are toxic 
to cancer cells, demonstrating their potential therapeutic effects. 

Details on lipids and related substrate metabolic pathways, in 
either normal or neoplastic cells have been presented elsewhere 
[16-19].  Intracellular lipids may originate either from circulating 
(dietary) fatty acids (FA) or (with the exception of essential ones) 
from FA synthesized within the cell. In neoplastic cells, FA 
originating from DNL but not dietary (circulating) FA serve as 
building blocks of lipids [9] (Figure 1).  The synthesis of FA 
starts with the carboxylation of acetyl CoA. The latter may 
originate from mitochondrial citrate that is shuttled to cytosol 
and then broken down to acetyl CoA and oxaloacetate, or from 
a ligase reaction between acetate and CoA (Figure 1).

The carboxylation of acetyl CoA produces a four-carbon 
compound, malonyl CoA, and is catalyzed by acetyl CoA 
carboxylase (ACC), a rate-limiting enzyme. Subsequent 
elongation and/or desaturation reactions lead to the formation 
of saturated and unsaturated fatty acids. Fatty acid synthase 
catalyzes some of the elongation reactions. The fatty acids are 
then esterified with glycerol-phosphate to form mono-, di- or 
triglycerides; the diphosphoglycerides make up the bulk of the 
phospholipid bilayer of biological membranes. The glycerol may 
originate from dihydroxyacetone phosphate of glycolysis or 
direct phosphorylation of glycerol. Additionally, the production 
of phospholipids without glycerol backbone (e.g. sphingosines) 
increases in breast cancer [20,21]. 

Thus, glycolysis, pentose phosphate pathways, Krebs (TCA) cycle 
and other pathways provide precursors for DNL. Thus, multiple 
therapeutic targets are available to affect DNL.

Hexokinase is the first enzyme involved in the glycolysis pathway 
and among key enzymes that can affect lipid metabolism in the 
normal and neoplastic cancer cells. There are four subtypes.  
Type 1 hexokinase produces glucose-6-phosphate for glycolysis 
and is also responsible for coordinating glycolysis with the TCA 
cycle. Types 2 and 3 Hexokinase are responsible for producing 
glucose-6-phosphate for lipid synthesis.  

Pyruvate dehydrogenase kinase (PDH) down regulates the 
PDH, which is responsible for converting pyruvate to acetyl 
CoA.  Monoacylglycerol lipase is responsible for converting 
monoacylglycerides to free fatty acids and glycerol. 

Carnitine palmitoyl transferase (CPT)-1 facilitates transport of 
fatty acids into mitochondria for beta-oxidation. 

ATP Citrate Lyase (ACL) cleaves citrate to acetyl-CoA and 
oxaloacetate in the cytoplasm and is often upregulated in cancer 
[10]. 

Acetyl CoA Carboxylase (ACC) is responsible for the 
carboxylation of acetyl CoA to produce malonyl CoA. Of the 
two forms, ACCα is highly expressed in the cytoplasm of 
lipogenic cells such as mammary glands and adipose tissue. ACC 
β is mainly present within skeletal muscle and in the heart 
where it is responsible for regulating fatty acid oxidation within 
these tissues. The liver contains significant amount of both types 
of ACC.  

Fatty Acid Synthase (FAS) catalyzes the conversion of Malonyl-
CoA to long-chain fatty acids. The elongation utilizes NADPH 
as a reducing agent. In normal tissues, de novo lipid synthesis is 
generally suppressed making the need for FAS nonexistent. De 
novo lipogenesis is generally elevated in cancer cells because of 
the increased need for energy and lipids for cellular proliferation 
which cannot be met by glycolytic activity or dietary (circulating 
fatty acids) alone (Figure 1). FAS expression is upregulated in 
several types of cancer including those of prostate, ovarian, 
colon, and lung cancers [10,22].

Besides FAS, cancer cells overexpress choline kinase, which is 
responsible for synthes iz ing impor tant membrane 
phospholipids- phosphatidylcholine and sphingomyelin. 
[20,21,23]. Mammary tumor cells also overexpress other key 
regulators of lipid metabolism such as sterol regulatory element-
binding protein (SREBP) [19]. The up regulation of several 
enzymes in lipid metabolism of cancer cells makes these enzymes 
excellent targets for treatment. Enzyme inhibitors, depending on 
their target(s), have the potential to induce apoptosis in cancer 
cells or to prevent cancer cells from effectively maintaining their 
energy and molecular requirements to continue proliferation. 
[24].

Copyright © 2013 Vedic Research, Inc. USA. All rights reserved.

Fatty Acid and Lipid Synthesis by Normal and Neoplastic 
Tiisues

Lipid Metabolism as Target for Cancer Therapy
Enzyme inhibitors have the potential to revolutionize cancer 
treatment; hence, treatments targeting lipid metabolism have 
become a current hot topic of research. Unfortunately, with the 
constant need for lipid metabolism in the body, some of these 
inhibitors have the potential to affect normal bodily functions as 
well as preventing growth of tumors. [25]. The mammary gland 
is also physiologically active in lipogenesis; hence sorting out 
normal vs. cancer-related effects on enzyme/metabolic activity is 
very crucial. Nevertheless, many agents have shown promising 
efficacy both in vitro and in xenografts of breast cancer cells. 
Table 1 shows partial list of the treatments targeting some 
enzymes in lipid metabolism those are at different stages of 
clinical development. 

For example, the cerulenin derivative, C75, was effective when 
tested on MCF-7 breast cancer cell culture and xenografts; when 
given to xenografted nude mice tumor size was <12.5% in C75-
treated animals as compared to controls [26].  Several of them 
such as Orlistat [27,28], hydroxycitrate and metformin have been 
approved for weight loss and to treat diabetes but not for cancer 
therapy. The use of animal models, especially dogs and cats, 
could hasten the development of safer mammary cancer 
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Figure 1: A summary of lipid metabolism in normal and neoplastic mammalian cells

Proliferating cells have high demand for cell components such as membranes, the major components of which are phospholipids (phophoglycerates, 
PG). Cholesterol is also an important membrane component. Under the action of  GPAT (Glycerol-3-phosphate acyltransferase), Glycerol-3- 
phosphate (Gly-3-PO4), a product of  glycolysis, gives rise to lisophosphatidic acid (LPA) and then phosphatidic acid (PA). Fatty acids (FA, saturated 
or unsaturated- SFA; USFA) and PA esterify to form PGs. One source of the FA is de novo synthesis starting with the carboxylation of Acetyl-CoA 
(AC) to form malonyl-CoA (MC), which is subsequently elongated and/or subjected desaturation processes; MC also inhibits the shuttling of FA into 
the mitochondria for oxidation. Alternatively, FA may originate as free FA (FFA) from plasma lipoproteins or the hydrolysis of intracellular triacyl 
glycerols (TAG) of lipid droplets (LD). FATP (fatty acid transport proteins) facilitate uptake of FFA by cells. Similarly, uptake of LDL-bound Chol 
via LDL receptors is another source of cholesterol. Due to increased demand, stored or plasma supply of FFA and cholesterol to the neoplastic 
machinery is unlikely to fulfill the requirements for proliferation; hence, de novo synthesis of FA and cholesterol from AC likely plays a major role.  
AC could be produced from citrate [Cit, originating from amino acids like glutamine, Glut, and cataplerosis from mitochondrial tricarboxylic acid 
(TCA) cycle], or synthesized in the cytosol from acetate. Oxaloacetate (OAA), a cleavage product of Cit becomes anaplerotic to TCA by being 
converted to malate (Mal). Mal can also form pyruvate (Pyr) with the generation of NADPH, which along with NADPH from the pentose 
phosphate pathway (PPP) is used as a reducing agent during elongation of FA and cholesterol synthesis.

Enzymes: GPAT* (Glycerol-3-phosphate acyltransferase), ACL (ATP citrate lyase), ACS (Acetyl CoA synthase), ACC * (Acetyl CoA Carboxylase), 
FAS (Fatty acid synthase), SCD (Stearoyl-CoA Desaturase),  ACAT (Acyl-CoA cholesteryl acyltransferase), HMGCS ( Hydroxymethylglutaryl 
Coenzyme A Synthase),  HMGCR* (HMG-CoA reductase). 

Enzymes marked with * are considered rate-limiting.
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Concluding Remarks

To meet their energy and cellular component needs, neoplastic 
cells primarily rely on DNL. There are numerous potential 
therapeutic targets that can be utilized to affect lipid 
metabolism. Some of the currently available cancer 
chemotherapies (e.g. antagonists of growth factors such as 
tyrosine kinase inhibitors) exert their effects downstream, in 
part, by interfering with lipid synthesis [29]. Specific targeting of 
cholesterol synthesis or uptake by tumor cells is also likely to 
reduce fluidity of membranes and hence the metastatic ability of 
tumor cells. The overall goal includes inhibiting DNL and 
enhancing lipid oxidation that will have effects similar to caloric 
restriction, which has already been shown to be beneficial in the 
prevention and treatment of different cancer [30,31]. Alternative 
approaches could also target uptake of glucose and fatty acid by 
tumor cells.  

Although there is strong evidence for increased expression of 
several lipogenic genes in mammary neoplasia, the gland is also 
physiologically active in large scale lipid synthesis during 

chemotherapeutic strategies.

Table 1: Some therapeutic agents targeting lipid metabolism 
tested for their effects on mammary neoplasia

lactation and pseudopregnancy.  For example, mammary ACC1  
mRNA expression increased by two-folds while that of stearoyl-
CoA desaturase (SCD) and SREBP1 increased up to 40 times, 
during lactation in mice and domestic cows [32,33].  A major 
challenge, as with other cancer chemotherapies, is how to 
selectively target the pathways in neoplastic cells without 
compromising normal mammary tissue which is also endowed 
with DNL capacities.

The complexity of the network of pathways influencing lipid 
metabolism require that we fully understand how an agent 
affects normal functions of the specific tissue and organism. 
Unraveling ideal targets in a specific cancer type is crucial to 
utilize the breadth of knowledge available to us and those 
developing in the future. Thus, in order to target the DNL 
pathway for cancer therapy, an understanding of key-differences 
and similarities between normal and neoplastic DNL is 
necessary. Additionally, the potential of these agents to synergize 
with the conventional chemo-, radiation, or molecularly targeted 
therapies needs to be explored. A rational combination regimen 
that targets for example lipid metabolism and growth factor 
signaling pathways may exhibit a better therapeutic index and 
clinical outcome. The use of dogs and cats, which spontaneously 
develop mammary carcinoma in a manner similar to humans, 
should be helpful in characterizing the physiological vs. 
neoplastic up regulation of lipogenic genes and hasten the 
development of therapeutic targets for mammary neoplasia.
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