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Abstract
The treatment of tumor metastasis is an extraordinary challenge for clinicians and patients. Although the focus of the therapeutic 
strategy is mainly limited to that problem, a number of unsuspected adverse events are associated with the current therapies. 
Accordingly, the efficiency and limitation of tumor therapeutics are governed by a set of tightly regulated pattern of molecular 
mechanisms, whose activation or inhibition is mediated by either unique or interacting intracellular signal pathways. These signaling 
pathways are responsible for the modulation of various cellular functions, including cell death and survival. The imbalance between 
pro- and anti-survival pathways determines whether cells die or survive. Thus, the development of an efficient therapeutic approach, 
based on targeting the aberrant signaling pathways, is thought to be a relevant strategy for cancer treatment. In the present review, we 
will focus on the functional role of intracellular signaling pathways as a target for tumor therapy.

Introduction

Signaling Pathways as Therapeutic Target in Tumor Treatment
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The successful eradication of any tumor requires a therapeutic 
approach that has the potential to kill differentiated cancer cells 
and to eradicate cancer initiating cells [1, 2]. Although the 
available therapies, which include chemotherapy, radiation 
therapy and immunotherapy, can successfully kill rapidly 
growing and differentiated tumor cells, their ability to eradicate 
cancer-initiating cells is obtuse [3]. Therapeutic approaches that 
only target differentiated cancer cells and fail to eradicate cancer 
initiating cells results in the development of more aggressive 
tumor cell populations and ultimately in a relapse [4-6]. 
Therefore, an efficient medicationmust have the potential to kill 
both differentiated cancer cell and cancer-initiating cells without 

impairing normal cells. Unlike normal cells, cancer cells clearly 
have a complex pathogenesis with the ability to reconstruct 
crosstalk and redundancy among the signaling pathways [7, 8]. 
In this context, therapeutic strategies based on targeting a 
single molecule or single pathway may have a limited benefit 
for patients. Therefore, a combination of therapies may be the 
best therapeutic strategy to inhibit pathways controlling tumor 
growth and survival. Accumulating evidence indicates that 
therapeutic modalites-induced phenotypic dysfunction elicit 
both pro- and anti-apoptotic responses that, in turn, affect the 
capacity of cancer cells to engage in catabolic processes such as 
senescence, apoptosis, postmitotic death, and autophagy [9-12].

Based on preclinical events and compared to other targeted 
therapeutics, therapeutic approaches targeting the aberrant 
signal pathways provide specific advantages to cancer patients, 
since these signal pathways are often upregulated in cancer cells 
as compared to normal cells [13]. For example, in cancer cells, 
the pro-apoptotic factors are inactivated and their 
downregulation is usually combined with upregulation of anti-
apoptotic proteins, a mechanism that enables cancer cells to be 
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more resistant to standard treatment [14,15]. Thus, targeting the 
pathways of proto-oncogenes, whose activation is tumor- 
specific, such as fms, a receptor tyrosine kinase, that is 
characteristic to leukemia [16,17], is considered a relevant target 
for tumor treatment. Therapeutic approaches targeting such 
pathways will be harmful for cancer cell rather than toxic for 
normal cells. Cellular factors that can selectively inhibit 
apoptotic pathways besides their ability to enhance the function 
of the pro-survival pathways, may present a promising 
therapeutic strartegy via increasing tumor sensitization to anti-
cancer agents. Also, targeting factors that are implicated in the 
regulation of the crosstalk between pro-and anti-apoptotic 
pathways or even those involved in the regulation of the 
crosstalk between apoptotic and autophagic pathways is a 
relevant therapeutic strategy. Since these pathways are 
functionally working in tumor cells and thought to be viable 
target for tumor treatment.

The identification and elucidation of signaling pathways 
responsible for tumor growth and progression such as, RAS/
RAF/MEK/ERK or PI3K/AKT/mTOR, has thrown up 
promising molecular targets for tumor treatment. Sseveral 
reports have demonstrated that the PI3K/AKT/mTOR and 
RAS/RAF/MEK/ERK pathways are often activated in cancer, 
and their components are either frequently mutated or altered 
[18,19]. A wide range of small-molecule inhibitors can be 
applied, in clinical utilization, based on their ability to block the 
above mentioned components of pathways and thereby inhibit 
their function. These observations present a significant 
molecular targets for the development of an expanding range of 
small-molecule inhibitors that can functionally block the 
various components of tumor associated pathways.

Mitogen Activated Protein Kinase (MAPK) is a signal 
transduction pathway, whose activation can be mediated by 
growth factor receptors such as, hepatocyte growth (HGF)/
scatter factor (SF), insulin growth factor (IGF), and epidermal 
growth factor (EGF). These pathways are mainly involved in the 
regulation of cellular events including, cell growth and 
proliferation [20,21]. Accumulated evidence over the last few 
decades has demonstrated that MAPKs play an important role 
in tumor development and progression [22,23]. For example, 
Ras- extracellular signalling kinase (ERK) pathway is generally 
targeted by growth factors or activating mutations [24,25]. In 
different tumor types, RAS mutations is a marker for an early 
oncogenic events [26-28]. Thus, the dysregulation of Ras- ERK 
pathway can alter the expression of multiple genes regulating 
different cellular processes such as, cell cycle regulation, 

Therapeutic Strategy Based on the 
Inhibition of Survival Pathways

Anti-cancer Agents with Potential to 
Target MAPK/ERK Pathway

differentiation, proliferation, survival, migration, and 
angiogenesis [29-31]. Accordingly, the activation of ERK1/2 
pathway in tumor cells in response to active mutations in the 
kinase domain of Ras-Raf signaling, can enhance cell 
proliferation, a tumor protective mechanism to escape from 
apoptotic cell death [32-34]. Thus, inhibition of Ras activation 
may increase the chemotherapeutic sensitivty of tumor cells 
bearing endogenous Ras mutation [35-37]. More important, 
the activation of ERK can increase the resistance to anti-cancer 
agents in different tumor types [38-40]. The activation of the 
MAPK signalling pathway is generally associated with the 
alteration of the expression of several proteins involved mainly 
in the regulation of different cellular functions including cell 
adhesion and motality, differentiation as well as proliferation. 
The initial attempts to block Ras activity met with more failures 
rather than successes, particularly, in G1 phase malignancies. 
However, the inhibition of farnesylation was successful in 
decreasing  Ras activity [41,42]. Farnesylation is a post-
translational modification resulting in the addition of a 15 
carbon group, a mechanism that is critical to Ras function 
[41,42]. Several Ras inhibitors such as, farnesyl transfer 
inhibitor (FTI) and Lonafarnib showed a therapeutic effects on 
tumor growth [43]. As reported in several studies the inhibition 
of farnesylation by FTI is suggested to be sufficient to block 
Ras-dependent cell signalling and to initiate tumor cell 
transformation [44]. Based on the central role of RAS/RAF/
MEK/ERK pathway in tumor development and progression as 
reported[43], targeting RAS/RAF/MEK/ERK pathway by 
farnesyl transferase inhibitors is considered a therapeutic 
strategy for tumor treatment[43]. The combination of different 
FTIs with standard chemotherapy such as, Sorafenib (Bay 
43-9006), small-molecule inhibitor of A-Raf, VEGF receptor 
(VEGFR)-2, VEGFR-3, platelet-derived growth factor receptor 
(PDGFR)-β, Flt3, and c-KIT, has been proven in a large 
number of clinical studies for their therapeutic reliability 
[45,46]. 

Activation of MAP kinases ERK1/ERK2 by anti-cancer agents 
depends on the cell type, the expression level of growth factor 
receptors [47-49]. The inactivation of MEK1/2 results in the 
inhibition of ERK1/2 that, in turn, leades to the enhancement 
of the killing efficiency of anti-cancer agents [50,51]. 
Accumulated evidence revealed that the inhibition of ERK1/2 
prior to the treatment sensit izes tumor cel ls to 
chemotherapeutic agents [38,52]. Clinical approaches like the 
small-molecule inhibitor of MEK1/2 (CI-1040) confirmed its 
potenial in suppressing MAPK phosphorylation in tumor cells 
[53,54]. Accordingly, several MEK inhibitors that have been 
investigated for their clinical relevance, these include 
Trametinib, Selumetinib, GDC-0973, BAY 86-9766, 
Pimasertib, PD325901 and CI-1040[55,56]. Also, their 
common toxicity including, rash and/or dermatitis acneiform, 
diarrhea, peripheral edema, and fatigue has been addressed 
[55,56].  To that end, the inhibition of cell growth by targeting 
MAP kinase signaling pathways is considered a promising 
approach for cancer treatment. Figure 1 demonstrates some of 
the inhibitory compounds, which have been proven to block 
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specific MAP kinase signaling proteins and may be relevant in a 
clinical application.

Anti-cancer Agents Targeting PI3K/
Akt Pathway 

The activation of the PI3K pathway can be mediated via 
different extracelluar signals by the stimulation of membrane 
receptors such as, insulin like growth factors (IGF), estrogene 
receptor β (erbβ) as well as integrin receptors [57-62]. Based on 
its function in the modulation of cell survival, PI3K/Akt 
signalling cascade is target for different therapeutic agents 
[63-65]. The involvement of PI3K/Akt signalling pathway in the 
regulation of angiogenesis, cell cycle control, and G1 phase 
associated protein such as, cycline D and cycline- dependent 
kinases, such as CDK4 has been reported in several studies 

Figure 1: Targeted therapies currently available or under clinical investigation for tumor treatment, and the molecular targets on which, they are 
thought to be functional. EGF, epidermal growth factor; EGFR, EGF receptor; PDGFR, platelet-derived growth factor, PDGFR;, PDGF receptor; 
HGF, hepatocyte growth factor; hepatocyte growth factor receptor, c-Met, IGF, insulin-like growth factor; IGF receptor, IGFR; VEGF, vascular 
endothelial growth factor; VEGFR, VEGF receptor; RAS, prototypical member of the RAS superfamily of proteins, activation of RAS signaling 
causes cell growth, differentiation and survival; RAF, a MAP kinase kinase kinase(MAP3K) that functions in the MAPK/ extracellular-signal 
regulated kinase (ERK) signal transduction pathway; a serine/threonine-specific kinase.

[66-68]. Inactivation of PI3K or Akt by small-molecule 
inhibitor will increase the sensitivty of tumor cells to 
chemotherapeutic agents. Also, the mechanistic target of 
Rapmycin (mTOR), the member of Akt pathway is considered 
a promising target for tumor therapy. Thus, the inhibition of 
mTOR by Rapamycin and RAD001 may enhance the efficiency 
of chemotherapeutic agents-induced death of tumor cells 
[69,70]. The inhibition of mTOR is associated with cell cycle 
arrest that can be mediated by the upregulation of cyclin-
dependent kinase inhibitors such as, p27 leading to the 
downregulation of Cyclin D1 [71-73]. Thus, targeting PI3K 
pathway by a number of small-molecular inhibitors in cancer 
patients, whose tumor harbors the activated PI3K, is 
considered a relevant therapeutic for tumor treatment. Also, 
targeting the subunits of PI3K pathway such as, p110 using 
either specific chemical inhibitors like IC486068, LY294002, 
Wortmanin or by the expression of the mutant p85 can lead to 
the enhancement of chemotherapy-induced apoptosis of tumor 
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Anti-cancer Agents Targeting JAK/
STAT Signaling Pathway

cells [74,75]. The inhibition of Akt function by either the 
overexpression of dominant negative Akt, glycogen synthase 
kinase-3 (GSK3) or by the inhibitor, ALX-349 has been reported 
to overcome tumor resistance to chemotherapy [76-80]. Also, 
clinical studies dealing with phase III trails demonstrated that 
the inhibition of mTOR can improve the tumor-growth delay 
[82-85]. Thus, targeting PI3K/Akt pathway may be a relevant 
strategy for tumor treatment. An outline demonstrating the 
components of PI3K/Akt signalling pathway in response to the 
activation of receptor tyrosine kinases by the corresponding 
ligands/agonists as well as drugs targeting mTORC1 and 
mTORC2 is shown (Figure 2). 

Figure 2: Targeting mTOR signaling pathway. The mTOR proteins exist in two protein complexes, namely mTOR complex1(mTORC) [mTOR, 
PRAS40, Deptor, and Raptor], and mTOR complex2 (mTORC2) [mTOR, mSIN1, Protor, LST8, Deptor, and Rictor]. Feedback inhibition 
resulting from sustained suppression of mTORC1 signaling triggers the activation of the mTORC2/AKT and ERK1/2 pathways through IRS/
PI3K. Drugs targeting mTORC1, and mTORC1/mTORC2 are shown. AKT, protein kinase B; PDK1 3-phosphoinositide-dependent kinase1; 
PI3K, phosphoinositide 3-kinase; PIP2, phosphoinositol-2-phosphate; PIP3, phosphoinositol-3-phosphate; PTEN, phosphatase and tensin homolog; 
Deptor, domain containing mTOR interacting protein; Raptor, regulatory-associated protein of mTOR; Rictor, Rapamycin-insensive companion of 
mTOR. 

The resistance of tumor cells to available therapetuc modalities 
results mainly from abnormal alterations in oncogenic 
signaling pathways through both genetic and epigenetic-
mediated mechanisms [86,87]. These signaling pathways are 
implicated in the regulation of a number of nuclear 
transcription factors that function as final effectors, and 
thereby initiate a gene expression pattern leading to the 
promotion and progression of cancer [88-90]. The most 
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discussed pathway among these is the nuclear transcriptional 
signal cascade JAK/STAT pathway. The main biological 
function of this pathway is the enhancement of cell survival 
through mechanism mediated by the increased expression of 
anti-apoptotic proteins such as, Bcl-2 and Bcl-XL, as well as the 
activation of the pro-inflammatory pathways such as, NF-κB and 
IL-6-GP130-JAK pathway that is mainly associated with tumor 
progression and invasion [57,91,92]. The inhibition of STAT 

Figure 3: Signal transducer and activator of transduction 3 (STAT3) signaling. Stat3 is tyrosine phosphorylated by janus kinase (JAK) kinases in 
response to cytokine/growth factor activation of cell surface receptors that are known as receptor tyrosine kinases (RTKs), glycoprotein 130 (gp130) 
with either interleukin-6 receptor (IL-6R) or soluble IL-6R (sIL-6R). Up on tyrosine phosphorylation (PY), Stat3 dimerizes and localizes to the 
nucleus, where it binds to Stat3 responsive elements. Stat3 is also target for serine phosphorylation (PS). Soluble factors that activate Stat3 include, 
the IL-6 family of cytokines. Agents to inhibit the Stat3 canonical pathway include targeting JAK (CEP-701, XL019, INCB018424, AZD1480) 
and the IL-6/sIL-6R interaction (tocilizumab, CNTO-328). HAT, histone acetyltransferase; HDAC, histone deacetylase; ISRE, interferon 
stimulated response element.

signaling, particularly STAT3, can lead to tumor-growth delay 
and the increase of the sensitivity of different tumor types to 
chemotherapy as shown in glioblastoma [93,94] and squamous 
cell carcinoma [95,96]. Also, a number of chemical agents have 
been reported for their reliability to inhibit JAK/STAT 
pathway, such as AG490 [97]. These chemical agents were 
found to improve tumor response to the available therapeutic 
modalities without any abberant toxicity [98-101]. Also, the 
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down regulation of STAT1 and STAT2 by their specific siRNA 
can increase the tumor sensitivty to anti-cancer agents in 
different tumor types [102,103]. More importantly, the 
suppression of JAK/STAT signaling pathway by small-molecule 
inhbitors has been shown to be sufficient to trigger cell growth 
arrest as well as to induce apoptosis in different tumor types 
[104-106], an evidence for the clinical relevance of JAK/STAT 
signaling pathway as a target for tumor therapy. JAK/STAT 
signalling pathway and its small-molecules inhibitors is outlined 
in Figure 3. 

Therapeutic Strategy Based on the 
promotion of Apoptotic Pathways

Apoptosis is a form of cell death, also referred to as programmed 
cell death, in which a ‘suicide’ machinery is activated within the 
cell leading to the fragmentation of DNA, shrinkage of the 
cytoplasm, membrane changes, and finally, cell death without 
any lysis or damage to neighboring cells [107]. The induction of 
apoptosis can be mediated by activation of pro-apoptotic 
signaling or the inhibition of the anti-apoptotic signaling. The 
activation of the pro-apoptotic signaling based on the 
stimulation of death receptors by its corresponding ligands, 
irrespective of p53 status of the cell, leading to the activation of 
effector caspases, and finally, to mitochondria-independent 
apoptosis, via mechanism mediated by the extrinsic pathway 
[108,109]. Whereas, the other strategy is to trigger apoptotic cell 
death through a non-receptor mediated pathway, namely the 
intrinsic pathway [110114]. The intrinsic pathway mediates the 
intracellular signal transduction processes that act directly on 
targets, within the cell, or on those associated with the 
mitochondrial dysregulation [111-114]. The activation of the 
intrinsic pathway can act in two opposing patterns. One of these 
patterns is mediated through the suppression of anti-apoptotic 
mechanisms [114], whereas the other one is mediated through 
the activation of pro-apoptotic mechanisms [111-114]. Thus, 
targeting both extrinsic and intrinsic pathways may be an 
attractive target for cancer treatment.

Therapeutic Modalities Targeting 
Extrinsic Pathway

The extrinsic apoptosis pathway transmits signals from 
extracellular death ligands through the appropriate death 
receptors to trigger the apoptotic machinery of the cell [106, 
108]. The activation of the extrinsic pathway is initiated by 
transmembrane receptor(s) through the ligation to the 
corresponding ligand(s) or agonist(s) of interest [106,108]. These 
receptors include FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, 
Apo2L/DR4, and Apo2L/DR5 [107]. However, one of the well-
characterized receptors includes the member of the tumor 

necrosis factor (TNF) receptor gene superfamily [115]. These 
family members share similar cysteine-rich extracellular 
domains in addition to a cytoplasmic death domain [116]. The 
main function of the death domain is to transmit the external 
death signal from the surface of the cell to the intracellular 
signaling pathways. The most successful therapeutic strategy 
based on targeting of death receptors, is the combination of 
the death receptor agonist TRAIL with conventional and 
investigational anti-cancer agents [117,118]. Correspondingly, a 
significant synergy for the combination of TRAIL with several 
cytotoxic agents has been reported in several studies [119,120]. 
These include the combination of TRAIL with agents 
described for their cytotoxic effect such as, carboplatin, 
paclitaxel, doxorubicin, 5-f luorouracil , irinotecan, 
camptothecin [121-123]. Also, several agents such as histone 
deacetylase (HDAC) inhibitors, rituximab, triterpenoids, and 
sorafenib showed a synergistic effect when combined with 
TRAIL [124,125]. Furthermore, the sensitization of many 
human and animal cell lines by the proteasome inhibitor was 
found to enhance TRAIL-induced cell death [126]. More 
importantly, the resistance of nontransformed cells to the 
combination of bortezomib and TRAIL, when compared with 
tumor cells, suggests a therapeutic benefit without any aberrant 
toxicity during the course of the treatment [127]. Although the 
potency of bortezomib in promotion of TRAIL-induced 
apoptosis of tumor cells, the mechanistic role of bortezomib in 
the enhancement of TRAIL-mediated effects is not clear. 
Generally, the inhibition of proteasome has multiple biological 
effects on the cells, since inhibition of the proteasome results 
mainly in cell cycle arrest and inactivation of survival pathways 
such as, NF-κB [128,129]. The inhibition of proteasome 
inhibitor can results in the induction of the expression of 
death receptors DR4 and DR5 in different tumor types [130], 
an evidence for the contribution of bortezomib in the 
promotion of the extrinsic signaling pathway of apoptosis. 
Thus, the development of agents with the ability to promote or 
restore apoptosis via a mechanism mediated by the activation 
of the extrinsic pathway has emerged as important therapeutic 
modalities for cancer treatment [131,132]. These therapeutic 
agents include the recombinant human (rh) Apo2L/TRAIL, 
dulanermin as well as agonist antibodies directed against death 
receptors (DR) 4 and 5, such as conatumumab, Lexatumumab, 
Mapatumumab [133-135]. The death receptor agonists are 
considered an attractive therapeutic target for tumor treatment 
[136,137]. In spite of the expression of death receptors on a 
wide variety of normal and tumor cells, most of death receptor 
agonists tend to induce apoptosis of tumor cells rather than of 
normal cells [138]. The ability of death receptor agonists to 
induce apoptosis independent from the status of p53 is an 
advantage for death receptor agonists as therapeutic target, 
since p53 is frequently either inactivated or mutated in most 
tumor types [139, 140].  Accordingly, the crosstalk between 
both extrinsic and intrinsic apoptotic pathways and death 
receptor agonists can enhance the therapeutic efficiency when 
combined with conventional chemotherapeutics that target cell 
growth or survival pathways [141,142]. Also, the advantage of 
death receptor agonists has been confirmed in a large number 
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of preclinical studies yielding promising results [143]. Therefore, 
the combination of death receptor agonists and clinically-proved 
anti-cancer agents may be an attractive therapeutic strategy for 
tumor treatment. Figure 4 demonstrates the induction of 
apoptosis by the ligation of death receptors.

Figure 4: Apoptosis can be initiated by the death-receptor (extrinsic) pathway that acts through caspase-8 or mitochondrial (intrinsic) pathway that 
acts through caspase-9. Also, both extrinsic and intrinsic pathways converge to activate the effector caspase that acts mainly on the death substrates. 
Cell death is regulated also by the Bcl-2 and inhibitors of (IAP) protein families. Bcl2 proteins mediate apoptosis by the regulation of the 
mitochondria permeability transation by inhibiting (Bcl-2 and Bcl-XL) or promoting (Bax and Bid), cytochrome c release, whereas, XIAP proteins act 
downstream to prevent processing of initiator caspase-9 from the apoptosome, a supramolecular caspase-activating complex that contains cytochrome c 
and apoptosis activating factor1. 

Therapeutic Modalities Targeting 
Intrinsic Pathway
The intrinsic pathway is a non-receptor mediated pathway and 
functions only via mitochondria associated mechanisms [144]. 
This pathway mediates the intracellular signals that act directly 
on targets, within the cell, or on those associated with the 
mitochondrial dysregulation [111-114]. The cell intrinsic stress 
sensors control the mitochondrial outer membrane 

permeabilization (MOMP) by a mechanism mediated through 
the modification of the interaction proteins of Bcl-2 family 
[111-114, 145]. Based on the number and the structure of their 
Bcl-2-homology domains (designated BH1-4), the Bcl-2 family 
members can be organized into three subgroups [146]. The 
activation of BH3-Only pro-apoptotic proteins can be mediated 
in response to a variable cell stress conditions. Once activated, 
the BH3-Only domains promote the oligomerization of the pro-
apoptotic proteins Bax and Bak as well as Noxa in the 
mitochondrial outer membrane leading to the loss of 
mitochondrial membrane potential (Δψm) and subsequently 
cell death [11-114,145]. In contrast, the other multi-BH domain 
proteins, such as Bcl-2, Bcl-XL and Mcl-1 inhibit MOMP by a 
mechanism mediated by the neutralization of pro-apoptotic 
family members [147]. Thus, targeting the activation of BH3-
only proteins or the inhibition of multi-BH- proteins by tumor 
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therapeutic approaches may be a relevant strategy for tumor 
treatment.

Our group and others described the possible molecular 
mechanisms of bortezomib-induced effects in tumor cells [112]. 
The combination of bortezomib with the inhibitors for anti-
apoptotic proteins such as, Bcl-2 or Mcl-1 or inhibitors for 
autophagy can improve bortezomib-induced cell death in 
melanoma cells [112,148]. One of the signaling pathways that 
thought to be a potenial target for bortezomib is the p53 
signaling pathway [112]. p53 is a tumor suppressor protein that 
is known as a DNA damage-inducible molecule [149,150]. P53 
signaling pathway is involved in the suppression of cancer 
progression via a mechanism mediated by the induction of cell-
cycle arrest, apoptosis or senescence in response to various 
cellular stimuli [151]. The activity of p53 signaling pathway is 
regulated by the murine double minute 2 (MDM2) [152]. The 
loss of the wild-type p53 (wtp53) as well as the mutation of p53 
in most human tumors results in the alteration of p53 function 
as a positive tumor suppressor factor into a negative regulator 
leading to tumor progression rather than tumor suppression 
[153]. The ability to restore the function of p53 in tumor cells 
can be mediated by various strategies including the ectopic 
expression of functional wtp53 or the reactivation of mutant p53 
in tumor cells. These suggested strategies based on the fact that 
p53-deficient cells undergo apoptosis or senescence in response 
to wtp53 gene transfer [154,155]. Also, the rescue of the mutant 
p53 function by Small molecules is thought to be a relevant 
strategy for tumor treatment. Since the reactivation of mutant 
p53 by the small molecules like as PRIMA-1 as well as its 
optimized form PRIMA-1Met were found to induce massive 
apoptosis in tumor cells with certain p53 mutation or those 
harboring various versions of mutations in the DNA-binding 
domain [156,157]. Thus, targeting mutant p53 by the 
reactivation of the mutant p53 in tumor cells may be a 
promising strategy for tumor treatment. Also, a tumor 
therapeutic strategy based on targeting p53:MDM2 interaction 
using several anticancer agents such as, sulphonamide 
compounds [158] and nutlins [159,160]. These therapeutic 
modalities have been early clinical trials for treatment of 
patients with solid tumors and haematological malignancies.

Therapeutic Strategy Based on the 
Crosstalk Between Pro- And Anti-
Apoptotic Pathways
Despite the induction of many biological effects on both cell 
and tissue levels, in response to various therapeutic agents, 
which can be divided into pro- and anti-apoptotic effects, the 
signal transduction pathways in tumor cells contain multi-

proteins and multi-linked pathways [161,162]. Generally, the 
activation of many signaling pathways demonstrates multi-
interaction and cross function, an evidence for the crosstalk 
between pro-and anti-apoptotic pathways. The crosstalk 
between these controversial pathways seems to be essential for 
cell balance under normal physiological conditions. An 
example for this is the family of the proteins p53 and Bcl-2, 
which are involved in the regulation of apoptotic signaling 
pathways. These proteins can also mediate pro-survival 
function under certain circumstances [163-165]. Accordingly, a 
therapeutic strategy based on the inhibition or suppression of 
single pathway has shown limited success, since the inhibition 
of Bcl-2 by its specific siRNA in different tumor types is unable 
to exercise any cytotoxic activity [166,167]. A therapeutic 
strategy by the direct stimulation of membrane-bound anti-
apoptotic or pro-apoptotic receptors, will be essential for 
amplifying the effects of target agents. Thus, clinical data 
revealed that the inhibition of endothelial growth factor 
receptor (EGFR) signal transduction pathway can result in an 
anti-tumor activity leading to tumor growth delay or cell death 
[168,169]. The presence of EGFR does not signify that EGFR 
signaling is a common pathway for different cancer types, since 
some tumor patients with EGFR-negative respond to EGFR 
inhibitors such as, Cetuximab[170,171]. The explanation for 
the resistance of EGFR-positive tumors may due to the 
presence of a significant cross-talk between PI3K/AKT and 
other pathways, such as those mediating opposite cellular 
functions like apoptosis, cell growth, and cell survival. Thus, 
targeting these pathways in order to interrupt this crosstalk may 
be a possible strategy to overcome tumor resistance to 
chemotherapy. Figure 5 demonstrates therapeutic modalities 
leading to tumor cell death via mechanism mediated by the 
apoptosis intrinsic pathway.

Therapeutic Strategy Based on the 
Modulation of Autophagic Pathways

Autophagic cell death, also known as type II cell death, is 
characterized by the formation of double membrane 
autophagic vacuoles in the cytoplasm [107]. Autophagy occurs 
in response to various cellular stressors differs from type I 
programmed cell death/apoptosis. Because the intrinsic 
overlapping of autophagic and cancer signaling pathways and 
the complexity of cancer disease, the fate of cancer cells cannot 
be determined by a single signaling pathway. Although the 
molecular mechanisms of autophagy and its functional impact 
in cancer, the role of autophagy varies depends on tumor type 
and the stage of tumor progression [172-174]. In early stage of 
tumor development, autophagy can act as a tumor suppressor 
[175-177], where as in advanced stages of tumor, the 
development of autophagy is more implicated in the regulation 
of tumor progression rather than tumor suppression [178,179]. 
Thus, the tumor type and stage should be taken in account by 
the treatment or by the development of the therapeutic 
modalities. 

Autophagy can be induced by different forms of cancer 
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Figure 5: Targeting intrinsic pathway in cancer therapy. The intrinsic pathway can be initiated by various signals by extracellular stimuli including, 
anti-cancer agents (e.g. bortezomib, taxol), hypoxia, steroids, growth factor withdrawal and UV. As a consequence, the stimulation of the tumor cells 
by various therapeutic modalities, BH-3-only proteins (Bim, Bid, Bad, Noxa, Puma) commit with anti-apoptotic Bcl-2 family (Bcl-2, BcXL, Mcl-1, 
Bcl-W) to release the inhibition of Bax and Bak to activate them. Next, Bax and Bak oligomerize and become active leading to the loss of 
mitochondrial membrane potential and subsequently to the release of cytochrome c, Smac/DIABLO into the cytoplasm, wherein they combine with 
an adaptor molecule, apoptosis protease-activating factor 1, and an inactive initiator caspase, caspase-9, within a multiprotein complex, namely 
apoptosome. Smac/DIABLO blocks inhibitors of apoptosis proteins to activate caspase-9 that, in turn, activates caspase-3 leading to apoptosis.

therapy, including conventional and novel targeted cancer 
therapeutics, and ionizing radiation as evidenced in several types 
of solid and hematological malignancies [111,180-183]. Although 
the involvement of the autophagic mechanisms in the 
modulation of the cytotoxic effects of anticancer agents, 
autophagy can also mediate pro-survival mechanisms in 
response to the toxicity withstand of the therapeutic agents 
[184]. In some cases, the inhibition of autophagy enhances 
tumor resistance to the chemotherapeutic agents [186,187], 

whereas in other cases the inhibition of autophagy promotes 
anti-cancer agents-induced apoptosis [111]. Thus, during the 
tumor treatment autophagy, is a only bystander so that its 
induction or inhibition does not influence the therapeutic 
status of tumor cells [187]. However, the molecular 
mechanisms, which are responsible for the regulation of the 
autophagic actions still remain to be characterized in detail. 
The genetic characteristics of the cancer cells seem to play a 
critical role in the regulation of the functional outcome of 
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autophagy, since autophagy has been shown, to protect different 
tumor cells from anti-cancer agents (e.g. tunicamycin, 
thappsiogargin and brefeldin A)-induced cell death  [188-190]. 
Surprisingly, the same anticancer agents were reported to trigger 
autophagy- mediated cell death of normal colonic epithelial cells 
as well as those of nontransformed murine embryonic 
fibroblasts [191-193]. The outcome of autophagy seems to be cell 
type- dependent, since the pan-Bcl-2 inhibitor was found to 
induce cytoprotective autophagy in the breast cancer cell 
MCF-7, whereas in glioma cells induced autophagic cell death 
[194-197]. Although the molecular mechanism underlying the 
opposite action of autophagy induced by pan-Bcl-2 inhibitor is 
not unknown, the differential expression of cellular proteins 

Figure 6: An overview of the autophagy signaling pathways that can be targeted for cancer therapy. Upon ionizing radiation (γ-irradiation), class III 
PI3K induces autophagy via mechanism mediated by endoplasmic reticulum stress, whereas, class I PI3K inhibits autophagy via mechanism-
mediated by Akt/mTOR pathway. Autophagy also can be induced by PERK-eIF2α and IRE1-JNK pathways that can be initiated by ER stress. 
While the inhibitor of Akt/mTOR pathway has inhibitory effects on autophagy. Inhibition of pro-apoptotic proteins by small-molecules caspase 
inhibitors is a promising anti-cancer therapeutic strategies using autophagy promotion. Potential therapies are demonstrated in their respective 
pathway. Dot lines are indicative of indirect mechanism, whereas solid lines display direct pathway.

seems to control the mechanism, whereby the tumor cells 
decide whether the autophagic pathway mediates cell death or 
survival [198]. 

Besides the genetic composition of cancer cells, growth factors 
stimulation influences the mechanistic consequences of 
autophagy [199-201]. An evidence for this, is the rescue of 
tumor suppressor gene aplasia Ras homolog I (ARHI)-induced 
reduction of autophagy in ovarian cancer cells in response to 
the stimulation with various cytokines and growth factors [201]. 
Whereas, in some cases the deprivation of growth factor signals 
by itself triggers autophagy [203]. Thus, targeting of growth 
factors by therapeutic modalities may be a relevant strategy for 
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tumor therapy. The pro-survival or the pro-death nature of 
autophagy seem to be pathway specific, since the induction of 
autophagy in cancer cells by the treatment with the 
chemotherapeutic agents, such as curcumin is regulated by the 
activation of the pro-survival ERK1/ERK2 pathway and 
inactivation of the AKT/mTOR pathway [204,205]. Although 
the abrogation of curcumin-induced autophagy by the activation 
of Akt and inhibition of ERK pathways, only Akt pathway can 
attenuates curcumin-induced cytotoxicity [206,207]. Whereas, 
the inhibition of ERK pathway can induce apoptosis as well as 
autophagy [208,209]. Accordingly, the cellular outcome of 
autophagy seems to be determined from the pathway that is 
involved in the initiation of autophagy. Thus, based on the 
potential role of the pro-survival pathway ERK in the regulation 
of cell-fate decision during the processes of autophagy targeting 
this pathway may be a relevant approach for tumor therapy. The 
possible mechanisms, whereby anti-cancer agents trigger 
autophagic pathway in tumor cells are shown (Figure 6).

Therapeutic Strategy Based on the 
Crosstalk Between Pro-And Anti-
Apoptotic Pathways
The decision whether the cell does survive, or die, in response 
to the environmental changes, depends on the cell type and the 
authenticity of the stress factor or stimulator [210]. Thus, the 
response of the cell to the environmental changes can be 
expressed in different forms and patterns via mechanisms 
mediated by apoptotic or/and autophagic signaling pathways. 
Depending on cell type and inducers, cell death can be variable 
in its morphology and characteristics [107]. Some anti-cancer 
agents can induce both apoptosis and autophagy 
simultaneously in different cell types [111,211]. Also, depending 
on the cell type, some proteins like death associated protein 
kinase (DAPK) can induce both apoptosis and autophagy [212].

Besides the modulation of autophagy by the apoptotic signaling 

Table 1: Summary of anticancer agents and their relevant molecular targets
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pathways, the modulation of apoptosis by autophagic signaling 
is also reported [213, 214]. The inhibition of apoptosis by 
autophagy is regulated by a mechanism mediated through 
degradation of pro-apoptotic proteins, such as caspases 
[215,216]. Accordingly, autophagy and apoptosis play opposite 
roles in cancer, since the inhibition of autophagy by chloroquine 
sensitize apoptosis-resistant tumor cells to anti-cancer agents 
[217,218]. More importantly, the role of autophagy in the 
modulation of tumor resistance to apoptosis induced by TRAIL 
has been demonstrated [219,220]. Thus, the induction of 
autophagy in response to TRAIL is considered a cellular strategy 
to protect tumor cells from TRAIL-induced cell death. Studies 
on the mechanism, whereby autophagy prevents TRAIL-
mediated cell death revealed that following the cleavage of pro-

Figure 7: Anticancer agents-induced both apoptosis and autophagy in cancer cells is governed by a crosstalk mediated by both apoptosis and 
autophagy-associated pathways and their components. This crosstalk between apoptotic and autophagic pathways can be activated by the ligation of 
death receptors to their corresponding ligands/ agonists (anticancer agents). Thus, the activation of death receptor(s) in tumor cells by the treatment 
with anti-cancer agents can lead to the activation of autophagy- associated pathways (e.g. NF-κB), that in turn, inhibit apoptosis, or activates 
apoptosis -associated pathways that subsequently leads to the cleavage of caspase-7 (Casp.7), an inhibitor of autophagy.

caspase up on the treatment of tumor cells with TRAIL, active 
caspase 8 becomes targeted to autophagosomes and 
subsequently degraded in lysosomes, as a result the downstream 
apoptotic effectors remains inactive and subsequently increases 
the resistance of tumor cells to TRAIL treatment. In contrast to 
the negative effect of autophagy on anti-cancer agents-induced 
apoptosis, apoptosis can also cleavage autophagy-related 
proteins [221,222]. The use of autophagy, by tumor cells, as a 
cytoprotective strategy seems to be a common strategy 
independent from tumor type or the anti-cancer agent 
[111,223]. The mechanisms, which are thought to be involved 
in the regulation of the crosstalk between apoptosis and 
autophagy during activation death receptor signaling pathways 
in tumor cells, are outlined in Figure 7.
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Although the elucidation of the mechanisms, whereby 
autophagy counteracts apoptosis in tumor cells, the risk of the 
combination of cancer therapies targeting both apoptosis and 
autophagy is unpredictable. Thus, further analysis of the unique 
signaling pathways of apoptosis and autophagy may help to 
develop a relevant therapeutic strategy to avoid the risk of 
autophagy during the course of tumor treatment. Table 1 
summarizes some of tumor therapeutic agents and their relevant 
molecular targets.

Conclusion
Targeting aberrant signaling pathways is thought to be a relevant 
strategy for cancer treatment. The anti-tumor efficiency of anti-
cancer agents is determined by their ability to trigger cell death 
within tumor. Thus, the development of multifunctional agents 
targeting multiple components of signaling pathways in tumor 
cells, with an advantage over the side effects, is urgently needed 
for improved outcome of tumor treatment. The induction of 
other types of cell death such as, autophagic cell death, rather 
than apoptosis might occur as a result of the diversity and the 
mechanistic mode of chemotherapy. Although the relation 
between autophagic cell death and apoptosis needs more 
explanation, targeting alternative pathways of apoptosis and/or 
autophagy might overcome tumor resistance to anti-cancer 
agents. Alteration of apoptotic and/or autophagic signaling 
pathways might determine susceptibility to cell death after 
chemotherapy, since anti-cancer agents might trigger pathways 
involved in the regulation of caspase-dependent apoptosis as 
well as caspase-independent autophagy at the same time. 
Targeting therapy related to apoptosis might increase the 
therapeutic efficacy of anti-cancer agents by modulating signal 
transduction pathways, other pathways might be influenced by 
cross-talk between the various cell death pathways. Thus, 
understanding the molecular mechanism(s) involved in the 
regulation of autophagic cell death in response to chemotherapy 
might provide a new strategy to overcome tumor resistance.
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