Signaling pathways as therapeutic target in tumor treatment
Abstract
The treatment of tumor metastasis is an extraordinary challenge for clinicians and patients. Although the focus of the therapeutic strategy is mainly limited to that problem, a number of unsuspected adverse events are associated with the current therapies. Accordingly, the efficiency and limitation of tumor therapeutics are govern by a set of tightly regulated pattern of molecular mechanisms, whose activation or inhibition is mediated by either unique or interacting intracellular signal pathways. These signaling pathways are responsible for the modulation of various cellular functions including cell death and survival. The imbalance between pro-and anti-survival pathways determines whether cells die or survive. Thus, the development of an efficient therapeutic approach, based on targeting the aberrant signaling pathways, is thought to be a relevant strategy for cancer treatment. In the present review, we will focus on the functional role of intracellular signaling pathways as target for tumor therapy.Â
Keywords
References
Ni C, Wu P, Zhu X, Ye J, Zhang Z, Chen Z, Zhang T, Zhang T, Wang K, Wu D, Qiu F, Huang J: IFN-γ selectively exerts pro-apoptotic effects on tumor-initiating label-retaining colon cancer cells. Cancer Lett. 2013, 336: 174-84.
http://dx.doi.org/10.1016/j.canlet.2013.04.029
PMid:23643941
Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI: Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010,12: R94.
http://dx.doi.org/10.1186/bcr2773
PMid:21067584 PMCid:PMC3046435
Alison MR, Lim SM, Nicholson LJ: Cancer stem cells: problems for therapy? J Pathol. 2011, 223: 147-61.
http://dx.doi.org/10.1002/path.2793
PMid:21125672
Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, Seibel NL, Twist CJ, Eckroth E, Sposto R, Gaynon PS, Loh ML: Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010, 28: 648-54.
http://dx.doi.org/10.1200/JCO.2009.22.2950
PMid:19841326 PMCid:PMC2815999
Gieseler F, Rudolph P, Kloeppel G, Foelsch UR: Resistance mechanisms of gastrointestinal cancers: why does conventional chemotherapy fail? Int J Colorectal Dis. 2003, 18: 470-80.
http://dx.doi.org/10.1007/s00384-003-0496-x
PMid:12774240
Lazaris AC, Kavantzas NG, Zorzos HS, Tsavaris NV, Davaris PS: Markers of drug resistance in relapsing colon cancer. J Cancer Res Clin Oncol. 2002, 128: 114-8.
http://dx.doi.org/10.1007/s00432-001-0310-5
PMid:11862483
Sun Y, Nelson PS: Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res. 2012,18: 4019-25.
http://dx.doi.org/10.1158/1078-0432.CCR-11-0768
PMid:22619305 PMCid:PMC3549396
Pawson T, Warner N: Oncogenic re-wiring of cellular signaling pathways. Oncogene. 2007, 26: 1268-75.
http://dx.doi.org/10.1038/sj.onc.1210255
PMid:17322911
Qiang L, Wu C, Ming M, Viollet B, He YY: Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem. 2013, 288: 1603-11.
http://dx.doi.org/10.1074/jbc.M112.415224
PMid:23212914 PMCid:PMC3548470
Rosenfeldt MT, Ryan KM: The multiple roles of autophagy in cancer. Carcinogenesis. 201, 32: 955-63.
Roussi S, Gossé F, Aoudé-Werner D, Zhang X, Geoffroy P, Miesch M, Marchioni E, Raul F: Perturbation of polyamine metabolism and its relation to cell death in human colon cancer cells treated by 7beta-hydroxycholesterol and 7beta-hydroxysitosterol. Int J Oncol. 2006, 29: 1549-54.
PMid:17088995
Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F: Prevention and treatment of cancer cachexia: new insights into an old problem. Eur J Cancer. 2006,42: 31-41.
http://dx.doi.org/10.1016/j.ejca.2005.07.026
PMid:16314085
Ranganathan P, Agrawal A, Bhushan R, Chavalmane AK, Kalathur RK, Takahashi T, Kondaiah P: Expression profiling of genes regulated by TGF-beta: differential regulation in normal and tumour cells. BMC Genomics. 2007, 8: 98.
http://dx.doi.org/10.1186/1471-2164-8-98
PMid:17425807 PMCid:PMC1858692
Manoochehri M, Karbasi A, Bandehpour M, Kazemi B: Down-Regulation of BAX Gene During Carcinogenesis and Acquisition of Resistance to 5-FU in Colorectal Cancer. Pathol Oncol Res. 2013 [(n Press]
Zheng LT, Lee S, Yin GN, Mori K, Suk K: Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J Neurochem. 2009, 111: 1238-51.
http://dx.doi.org/10.1111/j.1471-4159.2009.06410.x
PMid:19860839
Habif G, Grasset MF, Kieffer-Jaquinod S, Kuhn L, Mouchiroud G, Gobert-Gosse S: Phosphoproteome analyses reveal specific implications of Hcls1, p21-activated kinase 1 and Ezrin in proliferation of a myeloid progenitor cell line downstream of wild-type and ITD mutant Fms-like tyrosine kinase 3 receptors. J Proteomics. 2013,78:231-44.
http://dx.doi.org/10.1016/j.jprot.2012.09.009
PMid:23017497
Kim KT, Baird K, Davis S, Piloto O, Levis M, Li L, Chen P, Meltzer P, Small D: Constitutive Fms-like tyrosine kinase 3 activation results in specific changes in gene expression in myeloid leukaemic cells. Br J Haematol. 2007, 138: 603-15.
http://dx.doi.org/10.1111/j.1365-2141.2007.06696.x
PMid:17686054
Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A: Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther. 2008, 7: 307-15.
http://dx.doi.org/10.4161/cbt.7.2.5334
PMid:18059185
Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011, 2: 135-64.
PMid:21411864 PMCid:PMC3260807
Ma Y, Jin Z, Huang J, Zhou S, Ye H, Jiang S, Yu K: IQGAP1 plays an important role in the cell proliferation of multiple myeloma via the MAP kinase (ERK) pathway. Oncol Rep. 2013 [In Press]
http://dx.doi.org/10.3892/or.2013.2785
Hassan M, Ghozlan H, Abdel-Kader O: Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology. 2005, 333: 324-36.
http://dx.doi.org/10.1016/j.virol.2005.01.008
PMid:15721365
Gröschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstädter F, Dietmaier W: Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer. 2013, 132: 1537-46.
http://dx.doi.org/10.1002/ijc.27834
PMid:22965873
Bachelor MA, Bowden GT: UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004, 14: 131-8.
http://dx.doi.org/10.1016/j.semcancer.2003.09.017
PMid:15018897
Hu Z, Xu R, Liu J, Zhang Y, Du J, Li W, Zhang W, Li Y, Zhu Y, Gu L: GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway. Exp Cell Res. 2013, 319: 1932-41.
http://dx.doi.org/10.1016/j.yexcr.2013.05.028
PMid:23747719
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. ncotarget. 2012, 3:1068-111.
Erol A: An integrated and disease-oriented growth factor-regulated signal transduction network. Curr Mol Med. 2013,13: 86-93.
http://dx.doi.org/10.2174/1566524011307010086
http://dx.doi.org/10.2174/156652413804486331
http://dx.doi.org/10.2174/15665240130108
PMid:22834838
Wang J, Liu Y, Li Z, Du J, Ryu MJ, Taylor PR, Fleming MD, Young KH, Pitot H, Zhang J: Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010, 116: 5991-6002.
http://dx.doi.org/10.1182/blood-2010-04-281527
PMid:20921338 PMCid:PMC3031386
Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS, Miranti CK: Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol. 2004; 24: 8586-99.
http://dx.doi.org/10.1128/MCB.24.19.8586-8599.2004
PMid:15367678 PMCid:PMC516761
Tsubaki M, Satou T, Itoh T, Imano M, Yanae M, Kato C, Takago shi R, Komai M, Nishida S: Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol Cell Endocrinol. 2012, 361: 219-31.
http://dx.doi.org/10.1016/j.mce.2012.05.002
PMid:22579611
Hollenhorst PC: RAS/ERK pathway transcriptional regulation through ETS/AP-1 binding sites. Small GTPases. 2012, 3: 154-8.
http://dx.doi.org/10.4161/sgtp.19630
PMid:22653334 PMCid:PMC3442800
Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC, Lin SY, Chen SJ, Chen HC, Yeh SD, Wu CW: EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 2010, 70: 8822-31.
http://dx.doi.org/10.1158/0008-5472.CAN-10-0638
PMid:20978205
Schoppmann SF, Beer A, Nirtl N, Ba-Ssalamah A, Brodowicz T, Streubel B, Birner P: Downregulation of phosphatidylethanolamine binding protein 1 associates with clinical risk factors in gastrointestinal stromal tumors, but not with activation of the RAF-1-MEK-ETV1 pathway. Cancer Lett. 2013, 335: 26-30.
http://dx.doi.org/10.1016/j.canlet.2013.01.044
PMid:23376254
Wu KL, Huang EY, Jhu EW, Huang YH, Su WH, Chuang PC, Yang KD: Overexpression of galectin-3 enhances migration of colon cancer cells related to activation of the K-Ras-Raf-Erk1/2 pathway. J Gastroenterol. 2013, 48: 350-9.
http://dx.doi.org/10.1007/s00535-012-0663-3
PMid:23015305
Piscazzi A, Costantino E, Maddalena F, Natalicchio MI, Gerardi AM, Antonetti R, Cignarelli M, Landriscina M: Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J Clin Endocrinol Metab. 2012, 97: E898-906.
http://dx.doi.org/10.1210/jc.2011-3269
PMid:22442268
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007, 1773: 1263-84.
Koo HM, Gray-Goodrich M, Kohlhagen G, McWilliams MJ, Jeffers M, Vaigro-Wolff A, Alvord WG, Monks A, Paull KD, Pommier Y, Vande Woude GF: The ras oncogene-mediated sensitization of human cells to topoisomerase II inhibitor-induced apoptosis. J Natl Cancer Inst. 1999, 91:23 6-44.
Fan J, Banerjee D, Stambrook PJ, Bertino JR: Modulation of cytotoxicity of chemotherapeutic drugs by activated H-ras. Biochem Pharmacol. 1997, 53: 1203-9.
http://dx.doi.org/10.1016/S0006-2952(97)00101-9
El-Khattouti A, Selimovic D, Haïkel Y, Megahed M, Gomez CR, Hassan M: Identification and analysis of CD133+ melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response. Cancer Lett. 2013 [In Press]
PMid:24080340
Balko JM, Schwarz LJ, Bhola NE, Kurupi R, Owens P, Miller TW, Gómez H, Cook RS, Arteaga CL: Activation of MAPK Pathways due to DUSP4 Loss Promotes Cancer Stem Cell-like Phenotypes in Basal-like Breast Cancer. Cancer Res. 2013, 73: 6346-6358.
http://dx.doi.org/10.1158/0008-5472.CAN-13-1385
PMid:23966295
Iwakiri D, Minamitani T, Samanta M: Epstein-Barr virus latent membrane protein 2A contributes to anoikis resistance through ERK activation. J Virol. 2013, 87: 8227-34.
http://dx.doi.org/10.1128/JVI.01089-13
PMid:23698301 PMCid:PMC3700196
Ding H, McDonald JS, Yun S, Schneider PA, Peterson KL, Flatten KS, Loegering DA, Oberg AL, Riska SM, Huang S, Sinicrope FA, Adjei AA, Karp JE, Meng XW, Kaufmann SH: Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica. 2013 [In Press]
Benter IF, Abul HT, Al-Khaledi G, Renno WM, Canatan H, Akhtar S: Inhibition of Ras-GTPase farnesylation and the ubiquitin-proteasome system or treatment with angiotensin-(1-7) attenuates spinal cord injury-induced cardiac dysfunction. J Neurotrauma. 2011, 28: 1271-9.
http://dx.doi.org/10.1089/neu.2010.1682
PMid:21510818
Niessner H, Beck D, Sinnberg T, Lasithiotakis K, Maczey E, Gogel J, Venturelli S, Berger A, Mauthe M, Toulany M, Flaherty K, Schaller M, Schadendorf D, Proikas-Cezanne T, Schittek B, Garbe C, Kulms D, Meier F: The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol. 2011, 131: 468-79.
http://dx.doi.org/10.1038/jid.2010.297
PMid:20944654
Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna A, Lanza P, Monego G, Ranelletti FO: Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 2010, 31:1813-21.
http://dx.doi.org/10.1093/carcin/bgq157
PMid:20699249
Azad NS, Annunziata CM, Steinberg SM, Minasian L, Premkumar A, Chow C, Kotz HL, Kohn EC: Lack of reliability of CA125 response criteria with anti-VEGF molecularly targeted therapy. Cancer. 2008, 112: 1726-32.
http://dx.doi.org/10.1002/cncr.23374
PMid:18300236
Sridhar SS, Hedley D, Siu LL: Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005, 4: 677-85.
http://dx.doi.org/10.1158/1535-7163.MCT-04-0297
PMid:15827342
Wang C, Buck DC, Yang R, Macey TA, Neve KA: Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem. 2005, 93: 899-909.
http://dx.doi.org/10.1111/j.1471-4159.2005.03055.x
PMid:15857393
Purdom S, Chen QM: Epidermal growth factor receptor-dependent and -independent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in cardiomyocytes and heart fibroblasts. J Pharmacol Exp Ther. 2005, 312: 1179-86.
http://dx.doi.org/10.1124/jpet.104.077057
PMid:15574683
Arany I, Megyesi JK, Kaneto H, Price PM, Safirstein RL: Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2004, 287: F543-9.
http://dx.doi.org/10.1152/ajprenal.00112.2004
PMid:15149969
Nguyen TK, Jordan N, Friedberg J, Fisher RI, Dent P, Grant S: Inhibition of MEK/ERK1/2 sensitizes lymphoma cells to sorafenib-induced apoptosis. Leuk Res. 2010, 34: 379-86.
http://dx.doi.org/10.1016/j.leukres.2009.07.013
PMid:20117835 PMCid:PMC3150480
Aquilano K, Baldelli S, Rotilio G, Ciriolo MR: trans-Resveratrol inhibits H2O2-induced adenocarcinoma gastric cells proliferation via inactivation of MEK1/2-ERK1/2-c-Jun signalling axis. Biochem Pharmacol. 2009, 77: 337-47.
http://dx.doi.org/10.1016/j.bcp.2008.10.034
PMid:19038233
Buonato JM, Lazzara MJ: ERK1/2 Blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 2013 [In press].
PMid:24108744
Ding G, Feng C, Jiang H, Ding Q, Zhang L, Na R, Xu H, Liu J: Combination of Rapamycin, CI-1040, and 17-AAG Inhibits Metastatic Capacity of Prostate Cancer via Slug Inhibition. PLoS One. 2013, 8: e77400.
http://dx.doi.org/10.1371/journal.pone.0077400
PMid:24130883 PMCid:PMC3795052
Ou DL, Shen YC, Liang JD, Liou JY, Yu SL, Fan HH, Wang DS, Lu YS, Hsu C, Cheng AL: Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res. 2009, 15: 5820-8.
http://dx.doi.org/10.1158/1078-0432.CCR-08-3294
PMid:19737956
Santarpia L, Lippman SM, El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012, 16: 103-19.
http://dx.doi.org/10.1517/14728222.2011.645805
PMid:22239440 PMCid:PMC3457779
Hersey P, Bastholt L, Chiarion-Sileni V, Cinat G, Dummer R, Eggermont AM, Espinosa E, Hauschild A, Quirt I, Robert C, Schadendorf D: Small molecules and targeted therapies in distant metastatic disease. Ann Oncol. 2009; 20: vi35-40
http://dx.doi.org/10.1093/annonc/mdp254
PMid:19617296 PMCid:PMC2712592
Wang X, Liu Q, Ihsan A, Huang L, Dai M, Hao H, Cheng G, Liu Z, Wang Y, Yuan Z: JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci. 2012, 127: 412-24.
http://dx.doi.org/10.1093/toxsci/kfs106
PMid:22454431
Zuloaga R, Fuentes EN, Molina A, Valdés JA: The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast. Biochem Biophys Res Commun. 2013 [In Press].
http://dx.doi.org/10.1016/j.bbrc.2013.09.067
PMid:24064350
Kazi AA, Molitoris KH, Koos RD: Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod. 2009, 81: 378-87.
http://dx.doi.org/10.1095/biolreprod.109.076117
PMid:19420388 PMCid:PMC2849827
Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR: Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol. 2009, 296: R972-8.
http://dx.doi.org/10.1152/ajpregu.00045.2009
PMid:19211725 PMCid:PMC2698598
Riaz A, Ilan N, Vlodavsky I, Li JP, Johansson S: Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence. J Biol Chem. 2013, 288: 12366-75.
http://dx.doi.org/10.1074/jbc.M112.435172
PMid:23504323 PMCid:PMC3636920
Cipolla L, Consonni A, Guidetti G, Canobbio I, Okigaki M, Falasca M, Ciraolo E, Hirsch E, Balduini C, Torti M: The proline-rich tyrosine kinase Pyk2 regulates platelet integrin αIIbβ3 outside-in signaling. J Thromb Haemost. 2013, 11: 345-56.
http://dx.doi.org/10.1111/jth.12099
PMid:23216754
Uzdensky AB, Demyanenko SV, Bibov MY: Signal transduction in human cutaneous melanoma and target drugs. Curr Cancer Drug Targets. 2013, 13: 843-66.
http://dx.doi.org/10.2174/1568009611313080004
PMid:23675881
Gaikwad SM, Ray P: Non-invasive imaging of PI3K/Akt/mTOR signalling in cancer. Am J Nucl Med Mol Imaging. 2012, 2: 418-31.
PMid:23145359 PMCid:PMC3484421
Kanai R, Wakimoto H, Martuza RL, Rabkin SD: A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res. 2011, 17: 3686-96.
http://dx.doi.org/10.1158/1078-0432.CCR-10-3142
PMid:21505062 PMCid:PMC3107877
Jung JS, Jung K, Kim DH, Kim HS: Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol Res. 2012, 66: 95-103.
http://dx.doi.org/10.1016/j.phrs.2012.02.013
PMid:22465218
Adya R, Tan BK, Punn A, Chen J, Randeva HS: Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 2008, 78: 356-65.
http://dx.doi.org/10.1093/cvr/cvm111
PMid:18093986
Granata R, Trovato L, Lupia E, Sala G, Settanni F, Camussi G, Ghidoni R, Ghigo E: Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms. J Thromb Haemost. 2007, 5: 835-45.
http://dx.doi.org/10.1111/j.1538-7836.2007.02431.x
PMid:17388800
Yardley DA: Combining mTOR Inhibitors with Chemotherapy and Other Targeted Therapies in Advanced Breast Cancer: Rationale, Clinical Experience, and Future Directions. Breast Cancer (Auckl). 2013, 7:7-22.
Tomioka H, Mukohara T, Kataoka Y, Ekyalongo RC, Funakoshi Y, Imai Y, Kiyota N, Fujiwara Y, Minami H: Inhibition of the mTOR/S6K signal is necessary to enhance fluorouracil-induced apoptosis in gastric cancer cells with HER2 amplification. Int J Oncol. 2012, 41: 551-8.
PMid:22614071
Duong MT, Akli S, Wei C, Wingate HF, Liu W, Lu Y, Yi M, Mills GB, Hunt KK, Keyomarsi K: LMW-E/CDK2 deregulates acinar morphogenesis, induces tumorigenesis, and associates with the activated b-Raf-ERK1/2-mTOR pathway in breast cancer patients. PLoS Genet. 2012, 8: e1002538.
http://dx.doi.org/10.1371/journal.pgen.1002538
PMid:22479189 PMCid:PMC3315462
Dalvai M, Schubart K, Besson A, Matthias P: Oct1 is required for mTOR-induced G1 cell cycle arrest via the control of p27(Kip1) expression. Cell Cycle. 2010, 9: 3933-44.
http://dx.doi.org/10.4161/cc.9.19.13154
PMid:20935455
Paternot S, Roger PP: Combined inhibition of MEK and mammalian target of rapamycin abolishes phosphorylation of cyclin-dependent kinase 4 in glioblastoma cell lines and prevents their proliferation. Cancer Res. 2009, 69: 4577-81.
http://dx.doi.org/10.1158/0008-5472.CAN-08-3260
PMid:19458076
Geng L, Tan J, Himmelfarb E, Schueneman A, Niermann K, Brousal J, Fu A, Cuneo K, Kesicki EA, Treiberg J, Hayflick JS, Hallahan DE: A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3'-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res. 2004, 64: 4893-9.
http://dx.doi.org/10.1158/0008-5472.CAN-03-3955
PMid:15256460
Ueda K, Nakahara T, Akanuma K, Mori A, Sakamoto K, Ishii K: Differential effects of LY294002 and wortmannin on neurons and vascular endothelial cells in the rat retina. Pharmacol Rep. 2013, 65: 854-62.
http://dx.doi.org/10.1016/S1734-1140(13)71066-1
Fujiwara K, Daido S, Yamamoto A, Kobayashi R, Yokoyama T, Aoki H, Iwado E, Shinojima N, Kondo Y, Kondo S: Pivotal role of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in apoptosis and autophagy. J Biol Chem. 2008, 283: 388-97.
http://dx.doi.org/10.1074/jbc.M611043200
PMid:17959603
Mamaghani S, Simpson CD, Cao PM, Cheung M, Chow S, Bandarchi B, Schimmer AD, Hedley DW: Glycogen synthase kinase-3 inhibition sensitizes pancreatic cancer cells to TRAIL-induced apoptosis. PLoS One. 2012, 7: e41102.
http://dx.doi.org/10.1371/journal.pone.0041102
PMid:22829912 PMCid:PMC3400624
Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, Sato I, Zhao X, Kitano A, Kawakami K, Tanaka T, Takegami T, Tomosugi N, Minamoto T, Motoo Y: Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol. 2012, 47: 321-33.
http://dx.doi.org/10.1007/s00535-011-0484-9
PMid:22041920
Stoll V, Calleja V, Vassaux G, Downward J, Lemoine NR: Dominant negative inhibitors of signalling through the phosphoinositol 3-kinase pathway for gene therapy of pancreatic cancer. Gut. 2005, 54: 109-16.
http://dx.doi.org/10.1136/gut.2004.046706
PMid:15591514 PMCid:PMC1774384
Pu P, Kang C, Li J, Jiang H: Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumour Biol. 2004, 25: 172-8.
http://dx.doi.org/10.1159/000081099
PMid:15557754
Joo WD, Visintin I, Mor G: Targeted cancer therapy - Are the days of systemic chemotherapy numbered? Maturitas. 2013 [In Press].
http://dx.doi.org/10.1016/j.maturitas.2013.09.008
PMid:24128673
Ganesan P, Piha-Paul S, Naing A, Falchook G, Wheler J, Janku F, Zinner R, Laday S, Kies M, Tsimberidou AM. Phase I clinical trial of lenalidomide in combination with temsirolimus in patients with advanced cancer. Invest New Drugs. 2013 [In Press].
http://dx.doi.org/10.1007/s10637-013-0013-1
Maj-Hes A, Medioni J, Scotte F, Schmidinger M, Kramer G, Combe P, Gornadha Y, Elaidi R, Oudard S: Rechallenge with mTOR inhibitors in metastatic renal cell carcinoma patients who progressed on previous mTOR inhibitor therapy. Oncology. 2013, 85: 8-13.
http://dx.doi.org/10.1159/000350005
PMid:23797151
Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B, Cranmer LD, Reichardt P, Bompas E, Alcindor T, Rushing D, Song Y, Lee RM, Ebbinghaus S, Eid JE, Loewy JW, Haluska FG, Dodion PF, Blay JY: Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol. 2013, 31: 2485-92.
http://dx.doi.org/10.1200/JCO.2012.45.5766
PMid:23715582
Wolff AC, Lazar AA, Bondarenko I, Garin AM, Brincat S, Chow L, Sun Y, Neskovic-Konstantinovic Z, Guimaraes RC, Fumoleau P, Chan A, Hachemi S, Strahs A, Cincotta M, Berkenblit A, Krygowski M, Kang LL, Moore L, Hayes DF: Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2013, 31: 195-202.
http://dx.doi.org/10.1200/JCO.2011.38.3331
PMid:23233719 PMCid:PMC3532391
Shen DW, Pouliot LM, Hall MD, Gottesman MM: Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012, 64: 706-21.
http://dx.doi.org/10.1124/pr.111.005637
PMid:22659329 PMCid:PMC3400836
Narayan G, Freddy AJ, Xie D, Liyanage H, Clark L, Kisselev S, Un Kang J, Nandula SV, McGuinn C, Subramaniyam S, Alobeid B, Satwani P, Savage D, Bhagat G, Murty VV: Promoter methylation-mediated inactivation of PCDH10 in acute lymphoblastic leukemia contributes to chemotherapy resistance. Genes Chromosomes Cancer. 2011, 50: 1043-53.
http://dx.doi.org/10.1002/gcc.20922
PMid:21960365
Yang XS, Liu SA, Liu JW, Yan Q: Fucosyltransferase IV enhances expression of MMP-12 stimulated by EGF via the ERK1/2, p38 and NF-κB pathways in A431 cells. Asian Pac J Cancer Prev. 2012, 13: 1657-62.
http://dx.doi.org/10.7314/APJCP.2012.13.4.1657
PMid:22799384
Sedaghat Y, Mazur C, Sabripour M, Hung G, Monia BP: Genomic analysis of wig-1 pathways. PLoS One 2012, 7: e29429.
http://dx.doi.org/10.1371/journal.pone.0029429
PMid:22347364 PMCid:PMC3274543
Fonar Y, Frank D: FAK and WNT signaling: the meeting of two pathways in cancer and development. Anticancer Agents Med Chem. 2011, 11: 600-6.
http://dx.doi.org/10.2174/187152011796817673
PMid:21707509
Chetoui N, Boisvert M, Gendron S, Aoudjit F: Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010, 130: 418-26.
http://dx.doi.org/10.1111/j.1365-2567.2009.03244.x
PMid:20465565 PMCid:PMC2913221
Versteeg HH, Spek CA, Slofstra SH, Diks SH, Richel DJ, Peppelenbosch MP: FVIIa:TF induces cell survival via G12/G13-dependent Jak/STAT activation and BclXL production. Circ Res. 2004, 94:1032-40.
http://dx.doi.org/10.1161/01.RES.0000125625.18597.AD
PMid:15016732
Stechishin OD, Luchman HA, Ruan Y, Blough MD, Nguyen SA, Kelly JJ, Cairncross JG, Weiss S: On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro Oncol. 2013, 15: 198-207.
http://dx.doi.org/10.1093/neuonc/nos302
PMid:23262510 PMCid:PMC3548588
Swiatek-Machado K, Mieczkowski J, Ellert-Miklaszewska A, Swierk P, Fokt I, Szymanski S, Skora S, Szeja W, Grynkiewicz G, Lesyng B, Priebe W, Kaminska B: Novel small molecular inhibitors disrupt the JAK/STAT3 and FAK signaling pathways and exhibit a potent antitumor activity in glioma cells. Cancer Biol Ther. 2012, 13: 657-70.
http://dx.doi.org/10.4161/cbt.20083
PMid:22555804
Bonner JA, Yang ES, Trummell HQ, Nowsheen S, Willey CD, Raisch KP: Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma. Radiother Oncol. 2011, 99: 339-43.
http://dx.doi.org/10.1016/j.radonc.2011.05.070
PMid:21704410
Leeman-Neill RJ, Seethala RR, Singh SV, Freilino ML, Bednash JS, Thomas SM, Panahandeh MC, Gooding WE, Joyce SC, Lingen MW, Neill DB, Grandis JR: Inhibition of EGFR-STAT3 signaling with erlotinib prevents carcinogenesis in a chemically-induced mouse model of oral squamous cell carcinoma. Cancer Prev Res (Phila). 2011, 4: 230-7.
http://dx.doi.org/10.1158/1940-6207.CAPR-10-0249
PMid:21163936 PMCid:PMC3076320
Li CH, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, Liu XY: AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis. Biochem Biophys Res Commun. 2013, 435: 533-9.
http://dx.doi.org/10.1016/j.bbrc.2013.04.084
PMid:23665018
Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, Liu C, Wang J, Yang X, Vohra A, Ma D: Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med. 2013, 11:141.
http://dx.doi.org/10.1186/1479-5876-11-141
PMid:23759023 PMCid:PMC3700850
Starenki D, Singh NK, Jensen DR, Peterson FC, Park JI: Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett. 2013, 339: 144-51.
http://dx.doi.org/10.1016/j.canlet.2013.07.006
PMid:23856028
Lai SY, Johnson FM: Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat. 2010, 13: 67-78.
http://dx.doi.org/10.1016/j.drup.2010.04.001
PMid:20471303
Meriggi F, Di Biasi B, Abeni C, Zaniboni A: Anti-EGFR therapy in colorectal cancer: how to choose the right patient. Curr Drug Targets. 2009, 10: 1033-40.
http://dx.doi.org/10.2174/138945009789577891
PMid:19663767
Zhu H, Wang Z, Xu Q, Zhang Y, Zhai Y, Bai J, Liu M, Hui Z, Xu N: Inhibition of STAT1 sensitizes renal cell carcinoma cells to radiotherapy and chemotherapy. Cancer Biol Ther. 2012, 13: 401-7.
http://dx.doi.org/10.4161/cbt.19291
PMid:22262126
Zhang F, Shang D, Zhang Y, Tian Y: Interleukin-22 suppresses the growth of A498 renal cell carcinoma cells via regulation of STAT1 pathway. PLoS One. 2011, 6: e20382.
http://dx.doi.org/10.1371/journal.pone.0020382
PMid:21625390 PMCid:PMC3100322
Li J, Favata M, Kelley JA, Caulder E, Thomas B, Wen X, Sparks RB, Arvanitis A, Rogers JD, Combs AP, Vaddi K, Solomon KA, Scherle PA, Newton R, Fridman JS: INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia. 2010, 12: 28-38.
PMid:20072651 PMCid:PMC2805881
Park JH, Darvin P, Lim EJ, Joung YH, Hong DY, Park EU, Park SH, Choi SK, Moon ES, Cho BW, Park KD, Lee HK, Kim MJ, Park DS, Chung IM, Yang YM: Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS One. 2012, 7: e40531.
http://dx.doi.org/10.1371/journal.pone.0040531
PMid:22792362 PMCid:PMC3391253
Cetindere T, Nambiar S, Santourlidis S, Essmann F, Hassan M: Induction of indoleamine 2, 3-dioxygenase by death receptor activation contributes to apoptosis of melanoma cells via mitochondrial damage-dependent ROS accumulation. Cell Signal. 2010, 22: 197-211.
http://dx.doi.org/10.1016/j.cellsig.2009.09.013
PMid:19799997
El-Khattouti,A, Selimovic D, Haikel Y and Hassan M: Crosstalk Between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer. J Cell Death [In Press].
Hassan M, Feyen O, Grinstein E: Fas-induced apoptosis of renal cell carcinoma is mediated by apoptosis signal-regulating kinase 1 via mitochondrial damage-dependent caspase-8 activation. Cell Oncol. 2009, 31: 437-56.
PMid:19940360
Thomas SA, Vasudevan S, Thamkachy R, Lekshmi SU, Santhoshkumar TR, Rajasekharan KN, Sengupta S: Upregulation of DR5 receptor by the diaminothiazole DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole] triggers an independent extrinsic pathway of apoptosis in colon cancer cells with compromised pro and antiapoptotic proteins. Apoptosis. 2013,18:713-26.
http://dx.doi.org/10.1007/s10495-013-0826-6
PMid:23435998
Selvarajah J, Nathawat K, Moumen A, Ashcroft M, Carroll VA: Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Cell Death Dis. 2013, 4:e865
http://dx.doi.org/10.1038/cddis.2013.395
PMid:24136229 PMCid:PMC3920935
Selimovic D, Badura HE, El-Khattouti A, Soell M, Porzig BB, Spernger A, Ghanjati F, Santourlidis S, Haikel Y, Hassan M: Vinblastine-induced apoptosis of melanoma cells is mediated by Ras homologous A protein (Rho A) via mitochondrial and non-mitochondrial-dependent mechanisms. Apoptosis. 2013 18: 980-97.
http://dx.doi.org/10.1007/s10495-013-0844-4
PMid:23564313
Selimovic D, Porzig BB, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y, Hassan M: Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013, 25: 308-18.
http://dx.doi.org/10.1016/j.cellsig.2012.10.004
PMid:23079083
Selimovic D, Sprenger A, Hannig M, Haïkel Y, Hassan M: Apoptosis related protein-1 triggers melanoma cell death via interaction with the juxtamembrane region of p75 neurotrophin receptor. J Cell Mol Med. 2012, 16: 349-61.
http://dx.doi.org/10.1111/j.1582-4934.2011.01304.x
PMid:21418516
Selimovic D, Ahmad M, El-Khattouti A, Hannig M, Haïkel Y, Hassan M: Apoptosis-related protein-2 triggers melanoma cell death by a mechanism including both endoplasmic reticulum stress and mitochondrial dysregulation. Carcinogenesis. 201, 32: 1268-78.
Tahir RA, Sehgal SA, Khattak NA, Khan Khattak JZ, Mir A: Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): an insight from structure modeling to virtual screening for designing drug against head and neck cancer. Theor Biol Med Model. 2013, 10:38.
http://dx.doi.org/10.1186/1742-4682-10-38
PMid:23724937 PMCid:PMC3691635
Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD, Bauer KD, Ashkenazi A: Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol. 1996, 6:1669-76.
http://dx.doi.org/10.1016/S0960-9822(02)70791-4
Meijer A, Kruyt FA, van der Zee AG, Hollema H, Le P, Ten Hoor KA, Groothuis GM, Quax WJ, de Vries EG, de Jong S: Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL. Br J Cancer. 2013[In Press].
http://dx.doi.org/10.1038/bjc.2013.636
PMCid:PMC3629423
Charette N, De Saeger C, Horsmans Y, Leclercq I, Stärkel P: Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. Cell Death Dis. 2013, 4:e471.
http://dx.doi.org/10.1038/cddis.2012.200
PMid:23348585 PMCid:PMC3563988
Nencioni A, Wille L, Dal Bello G, Boy D, Cirmena G, Wesselborg S, Belka C, Brossart P, Patrone F, Ballestrero A: Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res. 2005, 11:4 259-65.
Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y: Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics (review). Int J Oncol. 1999, 15: 793-802.
PMid:10493964
Soria JC, Márk Z, Zatloukal P, Szima B, Albert I, Juhász E, Pujol JL, Kozielski J, Baker N, Smethurst D, Hei YJ, Ashkenazi A, Stern H, Amler L, Pan Y, Blackhall F: Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 2011, 29: 4442-51.
http://dx.doi.org/10.1200/JCO.2011.37.2623
PMid:22010015
Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP, Reese D, Wiezorek J, Blackhall F: Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010, 28: 1527-33.
http://dx.doi.org/10.1200/JCO.2009.25.4847
PMid:20159815
Hyer ML, Croxton R, Krajewska M, Krajewski S, Kress CL, Lu M, Suh N, Sporn MB, Cryns VL, Zapata JM, Reed JC: Synthetic triterpenoids cooperate with tumor necrosis factor-related apoptosis-inducing ligand to induce apoptosis of breast cancer cells. Cancer Res. 2005, 65: 4799-808.
http://dx.doi.org/10.1158/0008-5472.CAN-04-3319
PMid:15930300
Abdulghani J, Allen JE, Dicker DT, Liu YY, Goldenberg D, Smith CD, Humphreys R, El-Deiry WS: Sorafenib Sensitizes Solid Tumors to Apo2L/TRAIL and Apo2L/TRAIL Receptor Agonist Antibodies by the Jak2-Stat3-Mcl1 Axis. PLoS One. 2013, 8: e75414.
http://dx.doi.org/10.1371/journal.pone.0075414
PMid:24086526 PMCid:PMC3784419
Cao H, Cheng Y, You L, Qian J, Qian W: Homoharringtonine and SAHA synergistically enhance apoptosis in human acute myeloid leukemia cells through upregulation of TRAIL and death receptors. Mol Med Rep. 2013, 7: 1838-44.
PMid:23620163
Gillissen B, Richter A, Richter A, Overkamp T, Essmann F, Hemmati PG, Preissner R, Belka C, Daniel PT: Targeted therapy of the XIAP/proteasome pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a Bax/Bak-independent 'type I' mode. Cell Death Dis. 2013, 4: e643.
http://dx.doi.org/10.1038/cddis.2013.67
PMid:23703388 PMCid:PMC3674381
Koschny R, Ganten TM, Sykora J, Haas TL, Sprick MR, Kolb A, Stremmel W, Walczak H: TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology. 2007, 45: 649-58.
http://dx.doi.org/10.1002/hep.21555
PMid:17326159
Gu JJ, Hernandez-Ilizaliturri FJ, Mavis C, Czuczman NM, Deeb G, Gibbs J, Skitzki JJ, Patil R, Czuczman MS: MLN2238, a proteasome inhibitor, induces caspase-dependent cell death, cell cycle arrest, and potentiates the cytotoxic activity of chemotherapy agents in rituximab-chemotherapy-sensitive or rituximab-chemotherapy-resistant B-cell lymphoma preclinical models. Anticancer Drugs. 2013, 24: 1030-8.
http://dx.doi.org/10.1097/CAD.0000000000000008
PMid:23995855
Bosman MC, Schuringa JJ, Quax WJ, Vellenga E: Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1. Exp Hematol. 2013, 41: 530-538.
http://dx.doi.org/10.1016/j.exphem.2013.02.002
PMid:23416210
Chen KF, Yu HC, Liu CY, Chen HJ, Chen YC, Hou DR, Chen PJ, Cheng AL: Bortezomib sensitizes HCC cells to CS-1008, an antihuman death receptor 5 antibody, through the inhibition of CIP2A. Mol Cancer Ther. 2011, 10: 892-901.
http://dx.doi.org/10.1158/1535-7163.MCT-10-0794
PMid:21393428
Chen YC, Huang WJ, Hsu JL, Yu CC, Wang WT, Guh JH: A novel hydroxysuberamide derivative potentiates MG132-mediated anticancer activity against human hormone refractory prostate cancers--the role of histone deacetylase and endoplasmic reticulum stress. Prostate. 2013, 73: 1270-80.
http://dx.doi.org/10.1002/pros.22641
PMid:23813634
Ismail B, Ghezali L, Gueye R, Limami Y, Pouget C, Leger DY, Martin F, Beneytout JL, Duroux JL, Diab-Assaf M, Fagnere C, Liagre B: Novel methylsulfonyl chalcones as potential antiproliferative drugs for human prostate cancer: Involvement of the intrinsic pathway of apoptosis. Int J Oncol. 2013, 43:1160-8.
PMid:23877542
Fuchs CS, Fakih M, Schwartzberg L, Cohn AL, Yee L, Dreisbach L, Kozloff MF, Hei YJ, Galimi F, Pan Y, Haddad V, Hsu CP, Sabin A, Saltz L: TRAIL receptor agonist conatumumab with modified FOLFOX6 plus bevacizumab for first-line treatment of metastatic colorectal cancer: A randomized phase 1b/2 trial. Cancer. 2013[In Press].
http://dx.doi.org/10.1002/cncr.28353
PMid:24122767
Engesæter B, Engebraaten O, Flørenes VA, Mælandsmo GM: Dacarbazine and the agonistic TRAIL receptor-2 antibody lexatumumab induce synergistic anticancer effects in melanoma. PLoS One. 2012, 7: e45492.
http://dx.doi.org/10.1371/journal.pone.0045492
PMid:23029050 PMCid:PMC3447808
Song X, Kim HC, Kim SY, Basse P, Park BH, Lee BC, Lee YJ: Hyperthermia-enhanced TRAIL- and mapatumumab-induced apoptotic death is mediated through mitochondria in human colon cancer cells. J Cell Biochem. 2012, 113:1547-58.
PMid:22174016 PMCid:PMC3330147
Xiang H, Reyes AE 2nd, Eppler S, Kelley S, Damico-Beyer LA: Death receptor 5 agonistic antibody PRO95780: preclinical pharmacokinetics and concentration-effect relationship support clinical dose and regimen selection. Cancer Chemother Pharmacol. 2013,72: 405-15.
http://dx.doi.org/10.1007/s00280-013-2200-3
PMid:23771513
Micheau O, Shirley S, Dufour F: Death receptors as targets in cancer. Br J Pharmacol. 2013, 169: 1723-44.
http://dx.doi.org/10.1111/bph.12238
PMid:23638798 PMCid:PMC3753832
Locklin RM, Federici E, Espina B, Hulley PA, Russell RG, Edwards CM: Selective targeting of death receptor 5 circumvents resistance of MG-63 osteosarcoma cells to TRAIL-induced apoptosis. Mol Cancer Ther. 2007, 6: 3219-28.
http://dx.doi.org/10.1158/1535-7163.MCT-07-0275
PMid:18065493 PMCid:PMC2816033
Prasad S, Yadav VR, Kannappan R, Aggarwal BB: Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors: evidence for the role of reactive oxygen species and JNK. J Biol Chem. 2011, 286: 5546-57.
http://dx.doi.org/10.1074/jbc.M110.183699
PMid:21156789 PMCid:PMC3037668
Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC: Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell. 2004, 5: 501-12.
http://dx.doi.org/10.1016/S1535-6108(04)00113-8
Kaplan-Lefko PJ, Graves JD, Zoog SJ, Pan Y, Wall J, Branstetter DG, Moriguchi J, Coxon A, Huard JN, Xu R, Peach ML, Juan G, Kaufman S, Chen Q, Bianchi A, Kordich JJ, Ma M, Foltz IN, Gliniak BC: Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther. 2010, 9: 618-31.
http://dx.doi.org/10.4161/cbt.9.8.11264
PMid:20150762
Wu F, Wang J, Wang Y, Kwok TT, Kong SK, Wong C: Estrogen-related receptor alpha (ERRalpha) inverse agonist XCT-790 induces cell death in chemotherapeutic resistant cancer cells. Chem Biol Interact. 2009, 181: 236-42.
http://dx.doi.org/10.1016/j.cbi.2009.05.008
PMid:19464277
Xiang H, Reyes AE 2nd, Eppler S, Kelley S, Damico-Beyer LA: Death receptor 5 agonistic antibody PRO95780: preclinical pharmacokinetics and concentration-effect relationship support clinical dose and regimen selection. Cancer Chemother Pharmacol. 2013,72: 405-15.
http://dx.doi.org/10.1007/s00280-013-2200-3
PMid:23771513
Jiang M, Wang CY, Huang S, Yang T, Dong Z: Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol Renal Physiol. 2009, 296: F983-93.
http://dx.doi.org/10.1152/ajprenal.90579.2008
PMid:19279129 PMCid:PMC2681364
Hassan M, Alaoui A, Feyen O, Mirmohammadsadegh A, Essmann F, Tannapfel A, Gulbins E, Schulze-Osthoff K, Hengge UR: The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene. 2008, 27:4557-68.
http://dx.doi.org/10.1038/onc.2008.90
PMid:18408751
Chan SL, Yu VC: Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 2004,31:119-28.
http://dx.doi.org/10.1111/j.1440-1681.2004.03975.x
PMid:15008953
Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR: Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci U S A. 2008,105: 20327-32.
http://dx.doi.org/10.1073/pnas.0808036105
PMid:19074266 PMCid:PMC2629294
Srimatkandada P, Loomis R, Carbone R, Srimatkandada S, Lacy J: Combined proteasome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV-transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. Eur J Haematol. 2008,80: 407-18.
http://dx.doi.org/10.1111/j.1600-0609.2008.01044.x
PMid:18221384
Ozaki T, Nakagawara A, Nagase H: RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics. 2013 [In Press].
http://dx.doi.org/10.1155/2013/271347
Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, Cooney AJ, Li W, Barton MC: Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res. 2013 [In Press].
PMid:24078252 PMCid:PMC3874181
Neise D, Sohn D, Stefanski A, Goto H, Inagaki M, Wesselborg S, Budach W, Stühler K, Jänicke RU: The p90 ribosomal S6 kinase (RSK) inhibitor BI-D1870 prevents gamma irradiation-induced apoptosis and mediates senescence via RSK- and p53-independent accumulation of p21WAF1/CIP1. Cell Death Dis. 2013 [In Press].
http://dx.doi.org/10.1038/cddis.2013.386
PMid:24136223 PMCid:PMC3920941
Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, Tardell C, Garrido R, Lee E, Kolinsky K, To KH, Linn M, Podlaski F, Wovkulich P, Vu B, Vassilev LT: MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013, 73:2587-97.
http://dx.doi.org/10.1158/0008-5472.CAN-12-2807
PMid:23400593
Wu R, Baker SJ, Hu TC, Norman KM, Fearon ER, Cho KR: Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am J Pathol. 2013, 182:1391-9.
http://dx.doi.org/10.1016/j.ajpath.2012.12.031
PMid:23499052 PMCid:PMC3620412
Wouters A, Pauwels B, Lambrechts HA, Pattyn GG, Ides J, Baay M, Meijnders P, Peeters M, Vermorken JB, Lardon F: Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells. Int J Radiat Oncol Biol Phys. 2011, 80:558-66.
http://dx.doi.org/10.1016/j.ijrobp.2010.12.051
PMid:21377279
Kigawa J, Sato S, Shimada M, Kanamori Y, Itamochi H, Terakawa N: Effect of p53 gene transfer and cisplatin in a peritonitis carcinomatosa model with p53-deficient ovarian cancer cells. Gynecol Oncol. 2002, 84: 210-5.
http://dx.doi.org/10.1006/gyno.2001.6488
PMid:11812076
Aryee DN, Niedan S, Ban J, Schwentner R, Muehlbacher K, Kauer M, Kofler R, Kovar H: Variability in functional p53 reactivation by PRIMA-1Met/APR-246 in Ewing sarcoma. Br J Cancer. 2013 [In Press].
http://dx.doi.org/10.1038/bjc.2013.635
PMid:24129240
Messina RL, Sanfilippo M, Vella V, Pandini G, Vigneri P, Nicolosi ML, Gianì F, Vigneri R, Frasca F: Reactivation of p53 mutants by prima-1 [corrected] in thyroid cancer cells. Int J Cancer. 2012, 130(10):2259-70.
http://dx.doi.org/10.1002/ijc.26228
PMid:21647879
Mouraret N, Marcos E, Abid S, Gary-Bobo G, Saker M, Houssaini A, Dubois-Rande JL, Boyer L, Boczkowski J, Derumeaux G, Amsellem V, Adnot S: Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation. 2013, 127:1664-76.
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002434
PMid:23513067 PMCid:PMC3989211
Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M: Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle. 2006, 5: 2778-86.
http://dx.doi.org/10.4161/cc.5.23.3520
PMid:17172851
Van Maerken T, Sp eleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E, Yigit N, Coppens V, Philippé J, De Paepe A, Marine JC, Vandesompele J: Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 2006, 66: 9646-55.
http://dx.doi.org/10.1158/0008-5472.CAN-06-0792
PMid:17018622
Kaufmann SH, Vaux DL: Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene. 2003, 22: 7414-30.
http://dx.doi.org/10.1038/sj.onc.1206945
PMid:14576849
Nickoloff BJ, Qin JZ, Chaturvedi V, Bacon P, Panella J, Denning MF: Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc. 2002, 7: 27-35
http://dx.doi.org/10.1046/j.1523-1747.2002.19633.x
PMid:12518789
Labi V, Grespi F, Baumgartner F, Villunger A: Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ. 2008, 15: 977-87.
http://dx.doi.org/10.1038/cdd.2008.37
PMid:18369371
Stegh AH, DePinho RA: Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle. 2011, 10: 33-8.
http://dx.doi.org/10.4161/cc.10.1.14365
PMid:21200141 PMCid:PMC3048071
Cakir E, Yilmaz A, Demirag F, Oguztuzun S, Sahin S, Yazici UE, Aydin M: Prognostic significance of micropapillary pattern in lung adenocarcinoma and expression of apoptosis-related markers: caspase-3, bcl-2, and p53. APMIS. 2011,119:574-80.
http://dx.doi.org/10.1111/j.1600-0463.2011.02778.x
PMid:21851414
Hu X, Li W, Liu G, Wu H, Gao Y, Chen S, He D, Zhang Y: The effect of Bcl-2 siRNA combined with miR-15a oligonucleotides on the growth of Raji cells. Med Oncol. 2013, 30: 430.
http://dx.doi.org/10.1007/s12032-012-0430-6
PMid:23307249
Taratula O, Garbuzenko OB, Chen AM, Minko T: Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target. 2011, 19: 900-14.
http://dx.doi.org/10.3109/1061186X.2011.622404
PMid:21981718
Zhang X, Li Y, Li H, Qin Y, Bai C, Xu F, Zhu T, Xu J, Wu M, Wang C, Wei L, He J: Combined EGFR and VEGFR versus single EGFR signaling pathways inhibition therapy for NSCLC: a systematic review and meta-analysis. PLoS One. 2012, 7: e40178.
http://dx.doi.org/10.1371/journal.pone.0040178
PMid:22916093 PMCid:PMC3420905
Li J, Li Y, Feng ZQ, Chen XG: Anti-tumor activity of a novel EGFR tyrosine kinase inhibitor against human NSCLC in vitro and in vivo. Cancer Lett. 2009, 279: 213-20.
http://dx.doi.org/10.1016/j.canlet.2009.01.042
PMid:19299077
Yamatodani T, Ekblad L, Kjellén E, Johnsson A, Mineta H, Wennerberg J: Epidermal growth factor receptor status and persistent activation of Akt and p44/42 MAPK pathways correlate with the effect of cetuximab in head and neck and colon cancer cell lines. J Cancer Res Clin Oncol. 2009, 135: 395-402.
http://dx.doi.org/10.1007/s00432-008-0475-2
PMid:18813952
Hotz B, Keilholz U, Fusi A, Buhr HJ, Hotz HG: In vitro and in vivo antitumor activity of cetuximab in human gastric cancer cell lines in relation to epidermal growth factor receptor (EGFR) expression and mutational phenotype. Gastric Cancer. 2012, 15: 252-64.
http://dx.doi.org/10.1007/s10120-011-0102-9
PMid:22011788
Notte A, Leclere L, Michiels C: Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol. 2011, 82: 427-34.
http://dx.doi.org/10.1016/j.bcp.2011.06.015
PMid:21704023
Kondo Y, Kondo S: Autophagy and cancer therapy. Autophagy. 2006, 2: 85-90.
PMid:16874083
Lorin S, Hamaï A, Mehrpour M, Codogno P: Autophagy regulation and its role in cancer. Semin Cancer Biol. 2013; 23:361-79.
http://dx.doi.org/10.1016/j.semcancer.2013.06.007
PMid:23811268
Fan J, Zeng X, Li Y, Wang S, Wang Z, Sun Y, Gao H, Zhang G, Feng M, Ju D: Autophagy Plays a Critical Role in ChLym-1-Induced Cytotoxicity of Non-Hodgkin's Lymphoma Cells. PLoS One. 2013, 8: e72478.
http://dx.doi.org/10.1371/journal.pone.0072478
PMid:24015249 PMCid:PMC3756084
Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS: Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of miR-224. Hepatology. 2013 [In Press].
Kenzelmann Broz D, Attardi LD: TRP53 activates a global autophagy program to promote tumor suppression. Autophagy. 2013,9:1440-2.
http://dx.doi.org/10.4161/auto.25833
PMid:23899499 PMCid:PMC4026029
Sun K, Deng W, Zhang S, Cai N, Jiao S, Song J, Wei L: Paradoxical roles of autophagy in different stages of tumorigenesis: protector for normal or cancer cells. Cell Biosci. 2013, 3: 35.
http://dx.doi.org/10.1186/2045-3701-3-35
PMid:24016776 PMCid:PMC3849558
Toshima T, Shirabe K, Matsumoto Y, Yoshiya S, Ikegami T, Yoshizumi T, Soejima Y, Ikeda T, Maehara Y: Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrial β-oxidation. J Gastroenterol. 2013 [In Press].
Notte A, Ninane N, Arnould T, Michiels C: Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation. Cell Death Dis. 2013,4:e638.
http://dx.doi.org/10.1038/cddis.2013.167
PMid:23681233 PMCid:PMC3674374
Wu S, Wang X, Chen J, Chen Y: Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun. 2013, 434:898-903.
http://dx.doi.org/10.1016/j.bbrc.2013.04.053
PMid:23624503
Liu F, Liu D, Yang Y, Zhao S: Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett. 2013, 5:1261-1265.
PMid:23599776 PMCid:PMC3628963
Kim HJ, Lee SG, Kim YJ, Park JE, Lee KY, Yoo YH, Kim JM: Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells. Int J Oncol. 2013, 42:1985-92.
PMid:23563171
Lin JC, Huang WP, Liu CL, Lee JJ, Liu TP, Ko WC, Huang YC, Hsu ML, Wu CH, Chen YJ: Sorafenib induces autophagy in human myeloid dendritic cells and prolongs survival of skin allografts. Transplantation. 2013, 95:791-800.
http://dx.doi.org/10.1097/TP.0b013e31827fac48
PMid:23354299
Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, Chen X, Zhang H: mTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy. 2013 [In Press].
http://dx.doi.org/10.4161/auto.26447
He G, Wang Y, Pang X, Zhang B: Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation. Tumour Biol. 2013 [In Press].
PMCid:PMC3967080
Vijayakurup V, Spatafora C, Tringali C, Jayakrishnan PC, Srinivas P, Gopala S: Phenethyl caffeate benzoxanthene lignan is a derivative of caffeic acid phenethyl ester that induces bystander autophagy in WiDr cells. Mol Biol Rep. 2013 [In Press].
PMid:24190489
Yoshida T, Shiraishi T, Horinaka M, Wakada M, Sakai T: Glycosylation modulates TRAIL-R1/death receptor 4 protein: different regulations of two pro-apoptotic receptors for TRAIL by tunicamycin. Oncol Rep. 2007, 18:1239-42.
PMid:17914579
Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM: Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007, 282: 4702-10.
http://dx.doi.org/10.1074/jbc.M609267200
PMid:17135238
Ben Aicha S, Lessard J, Pelletier M, Fournier A, Calvo E, Labrie C: Transcriptional profiling of genes that are regulated by the endoplasmic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiol Genomics. 2007, 31: 295-305.
http://dx.doi.org/10.1152/physiolgenomics.00097.2007
PMid:17712038
Yang CC, Wu CT, Chen LP, Hung KY, Liu SH, Chiang CK: Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro. Toxicology. 2013,312:63-73.
http://dx.doi.org/10.1016/j.tox.2013.07.017
PMid:23939141
Chen N, Debnath J: IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy. 2013, 9:1214-27.
http://dx.doi.org/10.4161/auto.24870
PMid:23778976 PMCid:PMC3748193
Wang EY, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum LA: p53 mediates autophagy and cell death by a mechanism contingent on Bnip3. Hypertension. 2013, 62:70-7.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01028
PMid:23648705
Jeong HS, Choi HY, Lee ER, Kim JH, Jeon K, Lee HJ, Cho SG: Involvement of caspase-9 in autophagy-mediated cell survival pathway. Biochim Biophys Acta. 2011, 1813: 80-90.
Gao P, Bauvy C, Souquère S, Tonelli G, Liu L, Zhu Y, Qiao Z, Bakula D, Proikas-Cezanne T, Pierron G, Codogno P, Chen Q, Mehrpour M: The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem. 2010, 285: 25570-81.
http://dx.doi.org/10.1074/jbc.M110.118125
PMid:20529838 PMCid:PMC2919121
Jakubowicz-Gil J, Langner E, BÄ…dziul D, Wertel I, Rzeski W: Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol. 2013[In Press].
http://dx.doi.org/10.1016/j.taap.2013.10.003
PMid:24126416
Gong A, Ye S, Xiong E, Guo W, Zhang Y, Peng W, Shao G, Jin J, Zhang Z, Yang J, Gao J: Autophagy contributes to ING4-induced glioma cell death. Exp Cell Res. 2013, 319:1714-23.
http://dx.doi.org/10.1016/j.yexcr.2013.05.004
PMid:23684856
Wang SY, Yu QJ, Zhang RD, Liu B: Core signaling pathways of survival/death in autophagy-related cancer networks. Int J Biochem Cell Biol. 2011, 43:1263-6.
http://dx.doi.org/10.1016/j.biocel.2011.05.010
PMid:21640844
Ohne Y, Takahara T, Hatakeyama R, Matsuzaki T, Noda M, Mizushima N, Maeda T: Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem. 2008, 283: 31861-70.
http://dx.doi.org/10.1074/jbc.M801546200
PMid:18812319
Li TY, Lin SY, Lin SC: Mechanism and physiological significance of growth factor-related autophagy. Physiology (Bethesda). 2013, 28: 423-31.
http://dx.doi.org/10.1152/physiol.00023.2013
PMid:24186937
Kim KW, Paul P, Qiao J, Chung DH: Autophagy mediates paracrine regulation of vascular endothelial cells. Lab Invest. 2013, 93: 639-45.
http://dx.doi.org/10.1038/labinvest.2013.57
PMid:23608754 PMCid:PMC3669233
Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 2008, 118: 3917-29.
PMid:19033662 PMCid:PMC2582930
Kim R, Emi M, Tanabe K: Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol. 2006, 57: 545-53.
http://dx.doi.org/10.1007/s00280-005-0111-7
PMid:16175394
Ogier-Denis E, Pattingre S, El Benna J, Codogno P: Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000, 275: 39090-5
http://dx.doi.org/10.1074/jbc.M006198200
PMid:10993892
Guo WJ, Zhang YM, Zhang L, Huang B, Tao FF, Chen W, Guo ZJ, Xu Q, Sun Y: Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin. Autophagy. 2013, 9: 996-1008.
http://dx.doi.org/10.4161/auto.24407
PMid:23580233 PMCid:PMC3722334
Strozyk E, Kulms D: The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci. 2013, 14:15260-85.
http://dx.doi.org/10.3390/ijms140815260
PMid:23887651 PMCid:PMC3759859
Zhang X, Wei H, Liu Z, Yuan Q, Wei A, Shi D, Yang X, Ruan J: A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway. Toxicol Appl Pharmacol. 2013, 270:122-8.
http://dx.doi.org/10.1016/j.taap.2013.04.011
PMid:23624174
Wiedemann S, Wessela T, Schwarz K, Joachim D, Jercke M, Strasser RH, Ebner B, Simonis G: Inhibition of anti-apoptotic signals by Wortmannin induces apoptosis in the remote myocardium after LAD ligation: evidence for a protein kinase C-δ-dependent pathway. Mol Cell Biochem. 2013, 372: 275-83.
http://dx.doi.org/10.1007/s11010-012-1469-6
PMid:23010893
Zhao Y, Chen H, Shang Z, Jiao B, Yuan B, Sun W, Wang B, Miao M, Huang C: SD118-xanthocillin X (1), a novel marine agent extracted from Penicillium commune, induces autophagy through the inhibition of the MEK/ERK pathway. Mar Drugs. 2012, 10:1345-59.
http://dx.doi.org/10.3390/md10061345
PMid:22822377 PMCid:PMC3397444
Harberts E, Fishelevich R, Liu J, Atamas SP, Gaspari AA: MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun. 2013 [In Press].
PMid:24048771
Notte A, Ninane N, Arnould T, Michiels C: Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation. Cell Death Dis. 2013, 4:e638
http://dx.doi.org/10.1038/cddis.2013.167
PMid:23681233 PMCid:PMC3674374
Gandesiri M, Chakilam S, Ivanovska J, Benderska N, Ocker M, Di Fazio P, Feoktistova M, Gali-Muhtasib H, Rave-Fränk M, Prante O, Christiansen H, Leverkus M, Hartmann A, Schneider-Stock R: DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis. 2012,17: 1300-15.
http://dx.doi.org/10.1007/s10495-012-0757-7
PMid:23011180
Theron AE, Nolte EM, Lafanechère L, Joubert AM: Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells. Cancer Cell Int. 2013, 13: 87.
http://dx.doi.org/10.1186/1475-2867-13-87
PMid:23977838 PMCid:PMC3766685
Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, Kim HS, Hyun JW: A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 2013, 4:e750.
http://dx.doi.org/10.1038/cddis.2013.273
PMid:23907464 PMCid:PMC3763435
Li Y, Zhang J, Ma H, Chen X, Liu T, Jiao Z, He W, Wang F, Liu X, Zeng X: Protective role of autophagy in matrine‑induced gastric cancer cell death. Int J Oncol. 2013, 42:1417-26.
PMid:23404079
Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J, Lee Y, Seok JH, Choi SW, Lee SH, Man Kim J, Lee JH, Son CG, Lee ZW, Shen HM, Hur GM: Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy. 2012, 8:559-76.
http://dx.doi.org/10.4161/auto.18867
PMid:22441021
Zhang HQ, He B, Fang N, Lu S, Liao YQ, Wan YY: Autophagy inhibition sensitizes Cisplatin cytotoxicity in human gastric cancer cell line sgc7901. Asian Pac J Cancer Prev. 2013, 14: 4685-8.
http://dx.doi.org/10.7314/APJCP.2013.14.8.4685
PMid:24083726
Racoma IO, Meisen WH, Wang QE, Kaur B, Wani AA: Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One. 2013, 8: e72882.
http://dx.doi.org/10.1371/journal.pone.0072882
PMid:24039814 PMCid:PMC3767730
Di X, Zhang G, Zhang Y, Takeda K, Rosado LA, Zhang B: Accumulation of autophagosomes in breast cancer cells induces TRAIL resistance through downregulation of surface expression of death receptors 4 and 5. Oncotarget. 2013, 4: 1349-64.
PMid:23988408 PMCid:PMC3824535
Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, Moura-Neto V, Borges HL: Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis. 2013,4:e767.
http://dx.doi.org/10.1038/cddis.2013.283
PMid:23949216 PMCid:PMC3763445
Djavaheri-Mergny M, Maiuri MC, Kroemer G: Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene. 2010, 29:1717-9.
http://dx.doi.org/10.1038/onc.2009.519
http://dx.doi.org/10.1038/onc.2010.514
PMid:20101204
Fujiwara K, Daido S, Yamamoto A, Kobayashi R, Yokoyama T, Aoki H, Iwado E, Shinojima N, Kondo Y, Kondo S: Pivotal role of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in apoptosis and autophagy. J Biol Chem. 2008, 283:388-97.
http://dx.doi.org/10.1074/jbc.M611043200
PMid:17959603
Kanematsu S, Uehara N, Miki H, Yoshizawa K, Kawanaka A, Yuri T, Tsubura A: Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res. 2010, 30:3381-90.
PMid:20944112
DOI: http://dx.doi.org/10.14259%2Fcs.v2i1.97
Refbacks
- There are currently no refbacks.