
Role of myeloid derived hematopoietic cells in inflammation and immune tolerance to cancer
Abstract
Cancer is an organ with tumor cells and tumor microenvironment such as the immune system, stromal fibroblasts, macrophages, smooth muscle cells, endothelial cells all embedded in an extracellular matrix that fibroblasts produce. [1] [2]
Myeloid derived cells in and around tumor help cancer cells survive, grow and spread to new locations where they seed metastasis. [3]
Cancer cells from growing tumors hijack mechanisms used by the normal tissues for wound repair such as the productions of growth and angiogenic factors, matrix metalloproteinases, fibroblasts, cells of myeloid lineage and chemokines to promote their survival and growth. [4-8]
Cells of myeloid lineage origin have a crucial role in malignant organ development by protecting the growing tumor mass from immune recognition [9] hampering the immune rejection of cancer cells. [10]
Malignant tumors recruit cells of myeloid derivation to promote the growing tumor and its invasive abilities. [11] Survival of patients with adenocarcinoma of the breast, colon, lung and prostate is inversely proportional to the number of infiltrating cells of myeloid derivation of tumors. [12-15] Such malignancies are associated with shorter survival and detecting molecular signatures typical for macrophage infiltration such as CD68 in tumors herald poor diverse malignancies. [16,17]. There is two way editing of the growing malignancy and immune system of the affected patient: the malignant process shapes the immune system of the patient and at the same time the immune system of the patient shapes the growing tumor by selecting for the cancer cells resistant to immunodetection to survive and multiply. [18]
Keywords
References
Lanier LL, Sun JC: Do the terms innate and adaptive immunity create conceptual barriers? Nat Rev Immunol 2009, 9:302-303.
http://dx.doi.org/10.1038/nri2547
PMid:19396937 PMCid:PMC2844347
Deel MD, Kong M, Cross KP, Bertolone SJ: Absolute lymphocyte counts as prognostic indicators for immune thrombocytopenia outcomes in children. Pediatr Blood Cancer 2013, 60:1967-1974.
PMid:24038723
Pamer E, Cresswell P: Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol 1998, 16:323-358.
http://dx.doi.org/10.1146/annurev.immunol.16.1.323
PMid:9597133
Wong P, Pamer EG: CD8 T cell responses to infectious pathogens. Annu Rev Immunol 2003, 21:29-70.
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141114
PMid:12414723
Mills CD: Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol 2001, 21:399-425.
http://dx.doi.org/10.1615/CritRevImmunol.v21.i5.10
PMid:11942557
Irving BA, Weiss A: The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991, 64:891-901.
http://dx.doi.org/10.1016/0092-8674(91)90314-O
Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB, Ochoa AC: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 2003, 171:1232-1239.
PMid:12874210
Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003, 3:23-35.
http://dx.doi.org/10.1038/nri978
PMid:12511873
Mantovani A, Sica A, Locati M: Macrophage polarization comes of age. Immunity 2005, 23:344-346.
http://dx.doi.org/10.1016/j.immuni.2005.10.001
PMid:16226499
Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, Charrier S, Ryffel B, Cambi A, Figdor C, Vainchenker W, et al.: NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 2004, 104:3267-3275.
http://dx.doi.org/10.1182/blood-2004-01-0380
PMid:15242871
Carbone E, Terrazzano G, Ruggiero G, Zanzi D, Ottaiano A, Manzo C, Karre K, Zappacosta S: Recognition of autologous dendritic cells by human NK cells. Eur J Immunol 1999, 29:4022-4029.
http://dx.doi.org/10.1002/(SICI)1521-4141(199912)29:12<4022::AID-IMMU4022>3.0.CO;2-O
Stewart TJ, Abrams SI: How tumours escape mass destruction. Oncogene 2008, 27:5894-5903.
http://dx.doi.org/10.1038/onc.2008.268
PMid:18836470
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10:942-949.
http://dx.doi.org/10.1038/nm1093
PMid:15322536
Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ: Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003, 170:1257-1266.
PMid:12538684
Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004, 64:7022-7029.
http://dx.doi.org/10.1158/0008-5472.CAN-04-1449
PMid:15466195
Zhou Y, Tang L, Lin M, Xu S, Bai J, Song H: Expression of Cytotoxic T-Lymphocyte Antigen 4 on CD4+ and CD8+ T Cells Is Increased in Acute Lung Injury. DNA Cell Biol 2013.
Merad M, Manz MG: Dendritic cell homeostasis. Blood 2009, 113:3418-3427.
http://dx.doi.org/10.1182/blood-2008-12-180646
PMid:19176316 PMCid:PMC2668851
Degli-Esposti MA, Smyth MJ: Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005, 5:112-124.
http://dx.doi.org/10.1038/nri1549
PMid:15688039
Taylor PR, Gordon S: Monocyte heterogeneity and innate immunity. Immunity 2003, 19:2-4.
http://dx.doi.org/10.1016/S1074-7613(03)00178-X
Steinman RM: The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 2003, 51:59-60.
http://dx.doi.org/10.1016/S0369-8114(03)00096-8
Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A: Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 2001, 31:3388-3393.
http://dx.doi.org/10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q
Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC: Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 1998, 160:4587-4595.
PMid:9574566
Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000, 1:510-514.
http://dx.doi.org/10.1038/82763
PMid:11101873
Iwamoto S, Iwai S, Tsujiyama K, Kurahashi C, Takeshita K, Naoe M, Masunaga A, Ogawa Y, Oguchi K, Miyazaki A: TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol 2007, 179:1449-1457.
PMid:17641010
Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK: TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 2003, 171:2262-2269.
PMid:12928370
Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L: The origin and function of tumor-associated macrophages. Immunol Today 1992, 13:265-270.
http://dx.doi.org/10.1016/0167-5699(92)90008-U
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23:549-555.
http://dx.doi.org/10.1016/S1471-4906(02)02302-5
Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, et al.: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003, 198:1391-1402.
http://dx.doi.org/10.1084/jem.20030267
PMid:14597738 PMCid:PMC2194248
De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8:211-226.
http://dx.doi.org/10.1016/j.ccr.2005.08.002
PMid:16169466
Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, et al.: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612-616.
http://dx.doi.org/10.1126/science.1175202
PMid:19644120 PMCid:PMC2803111
Morita Y, Moriai T, Takiyama Y, Makino I: Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 1998, 23:41-50.
PMid:9520090
Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A: Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 2004, 14:155-160.
http://dx.doi.org/10.1016/j.semcancer.2003.10.001
PMid:15246050
Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G, De Baetselier P: Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 2006, 211:487-501.
http://dx.doi.org/10.1016/j.imbio.2006.06.002
PMid:16920488
Condeelis J, Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006, 124:263-266.
http://dx.doi.org/10.1016/j.cell.2006.01.007
PMid:16439202
Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001, 193:727-740.
http://dx.doi.org/10.1084/jem.193.6.727
PMid:11257139 PMCid:PMC2193412
Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J: Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007, 67:2649-2656.
http://dx.doi.org/10.1158/0008-5472.CAN-06-1823
PMid:17363585
Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006, 66:605-612.
http://dx.doi.org/10.1158/0008-5472.CAN-05-4005
PMid:16423985
Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006, 203:2691-2702.
http://dx.doi.org/10.1084/jem.20061104
PMid:17101732 PMCid:PMC2118163
Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009, 58:49-59.
http://dx.doi.org/10.1007/s00262-008-0523-4
PMid:18446337 PMCid:PMC3401888
Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008, 135:234-243.
http://dx.doi.org/10.1053/j.gastro.2008.03.020
PMid:18485901
Ochoa AC, Zea AH, Hernandez C, Rodriguez PC: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007, 13:721s-726s.
http://dx.doi.org/10.1158/1078-0432.CCR-06-2197
PMid:17255300
Kusmartsev SA, Li Y, Chen SH: Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000, 165:779-785.
PMid:10878351
Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H: The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007, 67:425; author reply 426.
http://dx.doi.org/10.1158/0008-5472.CAN-06-3037
PMid:17210725 PMCid:PMC1941787
Nagaraj S, Gabrilovich DI: Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 2008, 68:2561-2563.
http://dx.doi.org/10.1158/0008-5472.CAN-07-6229
PMid:18413722
Schmielau J, Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 2001, 61:4756-4760.
PMid:11406548
Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001, 166:678-689.
PMid:11123353
Rodriguez PC, Ochoa AC: T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol 2006, 16:66-72.
http://dx.doi.org/10.1016/j.semcancer.2005.10.001
PMid:16298138
Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 2004, 53:64-72.
http://dx.doi.org/10.1007/s00262-003-0443-2
PMid:14593498
Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006, 66:1123-1131.
http://dx.doi.org/10.1158/0008-5472.CAN-05-1299
PMid:16424049
Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007, 179:977-983.
PMid:17617589
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996, 2:1096-1103.
http://dx.doi.org/10.1038/nm1096-1096
PMid:8837607
Melani C, Chiodoni C, Forni G, Colombo MP: Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 2003, 102:2138-2145.
http://dx.doi.org/10.1182/blood-2003-01-0190
PMid:12750171
Zou W, Machelon V, Coulomb-L'Hermin A, Borvak J, Nome F, Isaeva T, Wei S, Krzysiek R, Durand-Gasselin I, Gordon A, et al.: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001, 7:1339-1346.
http://dx.doi.org/10.1038/nm1201-1339
PMid:11726975
Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, et al.: CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005, 65:465-472.
PMid:15695388
Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410:50-56.
http://dx.doi.org/10.1038/35065016
PMid:11242036
Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6:409-421.
http://dx.doi.org/10.1016/j.ccr.2004.08.031
PMid:15488763
Horst AK, Bickert T, Brewig N, Ludewig P, van Rooijen N, Schumacher U, Beauchemin N, Ito WD, Fleischer B, Wagener C, et al.: CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood 2009, 113:6726-6736.
http://dx.doi.org/10.1182/blood-2008-10-184556
PMid:19273835
Palmowski M, Salio M, Dunbar RP, Cerundolo V: The use of HLA class I tetramers to design a vaccination strategy for melanoma patients. Immunol Rev 2002, 188:155-163.
http://dx.doi.org/10.1034/j.1600-065X.2002.18814.x
PMid:12445289
Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V: Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 1998, 188:1641-1650.
http://dx.doi.org/10.1084/jem.188.9.1641
PMid:9802976 PMCid:PMC2212507
Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX: Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004, 5:141-149.
http://dx.doi.org/10.1038/ni1029
PMid:14704792
Inagaki A, Ishida T, Ishii T, Komatsu H, Iida S, Ding J, Yonekura K, Takeuchi S, Takatsuka Y, Utsunomiya A, et al.: Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and -10 levels are significant unfavorable prognostic factors. Int J Cancer 2006, 118:3054-3061.
http://dx.doi.org/10.1002/ijc.21688
PMid:16425276
Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007, 25:911-920.
http://dx.doi.org/10.1038/nbt1323
PMid:17664940
Kaser A, Winklmayr M, Lepperdinger G, Kreil G: The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep 2003, 4:469-473.
http://dx.doi.org/10.1038/sj.embor.embor830
PMid:12728244 PMCid:PMC1319185
Shojaei F, Singh M, Thompson JD, Ferrara N: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 2008, 105:2640-2645.
http://dx.doi.org/10.1073/pnas.0712185105
PMid:18268320 PMCid:PMC2268189
Shojaei F, Zhong C, Wu X, Yu L, Ferrara N: Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 2008, 18:372-378.
http://dx.doi.org/10.1016/j.tcb.2008.06.003
PMid:18614368
Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 2009, 106:6742-6747.
http://dx.doi.org/10.1073/pnas.0902280106
PMid:19346489 PMCid:PMC2665197
Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, et al.: Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000, 342:525-533.
http://dx.doi.org/10.1056/NEJM200002243420801
PMid:10684910
Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001, 7:1194-1201.
http://dx.doi.org/10.1038/nm1101-1194
PMid:11689883
Rafii S, Lyden D, Benezra R, Hattori K, Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002, 2:826-835.
http://dx.doi.org/10.1038/nrc925
PMid:12415253
Bertolini F, Shaked Y, Mancuso P, Kerbel RS: The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006, 6:835-845.
http://dx.doi.org/10.1038/nrc1971
PMid:17036040
Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V: Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008, 319:195-198.
http://dx.doi.org/10.1126/science.1150224
PMid:18187653
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438:820-827.
http://dx.doi.org/10.1038/nature04186
PMid:16341007 PMCid:PMC2945882
Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, et al.: Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005, 115:2363-2372.
http://dx.doi.org/10.1172/JCI23874
PMid:16138190 PMCid:PMC1193872
Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K: Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276:1423-1425.
http://dx.doi.org/10.1126/science.276.5317.1423
PMid:9162011
Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, et al.: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999, 154:385-394.
http://dx.doi.org/10.1016/S0002-9440(10)65285-6
Kerjaschki D: The crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005, 115:2316-2319.
http://dx.doi.org/10.1172/JCI26354
PMid:16138185 PMCid:PMC1193892
Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, et al.: Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 2008, 68:1100-1109.
http://dx.doi.org/10.1158/0008-5472.CAN-07-2572
PMid:18281485
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006, 95:272-281.
http://dx.doi.org/10.1038/sj.bjc.6603240
PMid:16832418 PMCid:PMC2360657
Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, Morishita Y, Yashiro M, Hirakawa K, Kaminishi M, et al.: Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 2007, 67:10181-10189.
http://dx.doi.org/10.1158/0008-5472.CAN-07-2366
PMid:17974958
Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007, 7:41-51.
http://dx.doi.org/10.1038/nri1995
PMid:17186030
Dey R, Ji K, Liu Z, Chen L: A cytokine-cytokine interaction in the assembly of higher-order structure and activation of the interleukine-3:receptor complex. PLoS One 2009, 4:e5188.
http://dx.doi.org/10.1371/journal.pone.0005188
PMid:19352505 PMCid:PMC2662821
Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS: Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol 2004, 16:395-404.
http://dx.doi.org/10.1093/intimm/dxh042
PMid:14978013
Okada E, Yamazaki M, Tanabe M, Takeuchi T, Nanno M, Oshima S, Okamoto R, Tsuchiya K, Nakamura T, Kanai T, et al.: IL-7 exacerbates chronic colitis with expansion of memory IL-7Rhigh CD4+ mucosal T cells in mice. Am J Physiol Gastrointest Liver Physiol 2005, 288:G745-754.
http://dx.doi.org/10.1152/ajpgi.00276.2004
PMid:15550560
Andersson A, Yang SC, Huang M, Zhu L, Kar UK, Batra RK, Elashoff D, Strieter RM, Dubinett SM, Sharma S: IL-7 promotes CXCR3 ligand-dependent T cell antitumor reactivity in lung cancer. J Immunol 2009, 182:6951-6958.
http://dx.doi.org/10.4049/jimmunol.0803340
PMid:19454692
Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009, 15:527-538.
http://dx.doi.org/10.1016/j.ccr.2009.04.010
PMid:19477431 PMCid:PMC2846696
Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M, Constantinescu SN, Knoops L, Renauld JC: Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers. J Biol Chem 2009, 284:6773-6781.
http://dx.doi.org/10.1074/jbc.M807531200
PMid:19139102 PMCid:PMC2652315
Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al.: gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009, 15:91-102.
http://dx.doi.org/10.1016/j.ccr.2009.01.002
PMid:19185844
Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A: Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 2006, 17:173-188.
http://dx.doi.org/10.1016/j.cytogfr.2006.01.004
PMid:16540365
Correia MP, Cardoso EM, Pereira CF, Neves R, Uhrberg M, Arosa FA: Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation. J Immunol 2009, 182:6149-6159.
http://dx.doi.org/10.4049/jimmunol.0802470
PMid:19414768
Laurence A, Astoul E, Hanrahan S, Totty N, Cantrell D: Identification of pro-interleukin 16 as a novel target of MAP kinases in activated T lymphocytes. Eur J Immunol 2004, 34:587-597.
http://dx.doi.org/10.1002/eji.200324598
PMid:14768064
Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009, 206:1457-1464.
http://dx.doi.org/10.1084/jem.20090207
PMid:19564351 PMCid:PMC2715087
Sattler A, Wagner U, Rossol M, Sieper J, Wu P, Krause A, Schmidt WA, Radmer S, Kohler S, Romagnani C, et al.: Cytokine-induced human IFN-gamma-secreting effector-memory Th cells in chronic autoimmune inflammation. Blood 2009, 113:1948-1956.
http://dx.doi.org/10.1182/blood-2008-02-139147
PMid:19104082
Chada S, Bocangel D, Ramesh R, Grimm EA, Mumm JB, Mhashilkar AM, Zheng M: mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther 2005, 11:724-733.
http://dx.doi.org/10.1016/j.ymthe.2004.12.021
PMid:15851011
Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I, Murata K, Imaizumi Y, Tsukasaki K, Tsuruda K, et al.: High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett 2007, 256:196-206.
http://dx.doi.org/10.1016/j.canlet.2007.06.001
PMid:17624663
Ziesche E, Bachmann M, Kleinert H, Pfeilschifter J, Muhl H: The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 2007, 282:16006-16015.
http://dx.doi.org/10.1074/jbc.M611040200
PMid:17438334
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253-268.
http://dx.doi.org/10.1038/nri3175
PMid:22437938 PMCid:PMC3587148
Mussai F, De Santo C, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM, Qureshi A, Dazzi F, Vyas P, Cerundolo V: Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 2013, 122:749-758.
http://dx.doi.org/10.1182/blood-2013-01-480129
PMid:23733335 PMCid:PMC3731930
DOI: http://dx.doi.org/10.14259%2For.v1i1.79
Refbacks
- There are currently no refbacks.