Open Journal Systems

Cover Image

Role of myeloid derived hematopoietic cells in inflammation and immune tolerance to cancer

Iuliana Shapira, Keith S Sultan, Emanuela Taioli, Annette Lee

Abstract


Cancer is an organ with tumor cells and tumor microenvironment such as the immune system, stromal fibroblasts, macrophages, smooth muscle cells, endothelial cells all embedded in an extracellular matrix that fibroblasts produce. [1] [2]

Myeloid derived cells in and around tumor help cancer cells survive, grow and spread to new locations where they seed metastasis. [3]

Cancer cells from growing tumors hijack mechanisms used by the normal tissues for wound repair such as the productions of growth and angiogenic factors, matrix metalloproteinases, fibroblasts, cells of myeloid lineage and chemokines to promote their survival and growth. [4-8]

Cells of myeloid lineage origin have a crucial role in malignant organ development by protecting the growing tumor mass from immune recognition [9] hampering the immune rejection of cancer cells. [10]

Malignant tumors recruit cells of myeloid derivation to promote the growing tumor and its invasive abilities. [11] Survival of patients with adenocarcinoma of the breast, colon, lung and prostate is inversely proportional to the number of infiltrating cells of myeloid derivation of tumors. [12-15] Such malignancies are associated with shorter survival and detecting molecular signatures typical for macrophage infiltration such as CD68 in tumors herald poor diverse malignancies. [16,17]. There is two way editing of the growing malignancy and immune system of the affected patient: the malignant process shapes the immune system of the patient and at the same time the immune system of the patient shapes the growing tumor by selecting for the cancer cells resistant to immunodetection to survive and multiply. [18]


Keywords


immune system, malignancy development, cancer, macrophages, dendritic cells, cancer outcome, T-regulatory cells

Full Text:

PDF PDF Plus HTML Untitled

References


Lanier LL, Sun JC: Do the terms innate and adaptive immunity create conceptual barriers? Nat Rev Immunol 2009, 9:302-303.

http://dx.doi.org/10.1038/nri2547

PMid:19396937 PMCid:PMC2844347

Deel MD, Kong M, Cross KP, Bertolone SJ: Absolute lymphocyte counts as prognostic indicators for immune thrombocytopenia outcomes in children. Pediatr Blood Cancer 2013, 60:1967-1974.

PMid:24038723

Pamer E, Cresswell P: Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol 1998, 16:323-358.

http://dx.doi.org/10.1146/annurev.immunol.16.1.323

PMid:9597133

Wong P, Pamer EG: CD8 T cell responses to infectious pathogens. Annu Rev Immunol 2003, 21:29-70.

http://dx.doi.org/10.1146/annurev.immunol.21.120601.141114

PMid:12414723

Mills CD: Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol 2001, 21:399-425.

http://dx.doi.org/10.1615/CritRevImmunol.v21.i5.10

PMid:11942557

Irving BA, Weiss A: The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991, 64:891-901.

http://dx.doi.org/10.1016/0092-8674(91)90314-O

Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB, Ochoa AC: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 2003, 171:1232-1239.

PMid:12874210

Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003, 3:23-35.

http://dx.doi.org/10.1038/nri978

PMid:12511873

Mantovani A, Sica A, Locati M: Macrophage polarization comes of age. Immunity 2005, 23:344-346.

http://dx.doi.org/10.1016/j.immuni.2005.10.001

PMid:16226499

Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, Charrier S, Ryffel B, Cambi A, Figdor C, Vainchenker W, et al.: NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 2004, 104:3267-3275.

http://dx.doi.org/10.1182/blood-2004-01-0380

PMid:15242871

Carbone E, Terrazzano G, Ruggiero G, Zanzi D, Ottaiano A, Manzo C, Karre K, Zappacosta S: Recognition of autologous dendritic cells by human NK cells. Eur J Immunol 1999, 29:4022-4029.

http://dx.doi.org/10.1002/(SICI)1521-4141(199912)29:12<4022::AID-IMMU4022>3.0.CO;2-O

Stewart TJ, Abrams SI: How tumours escape mass destruction. Oncogene 2008, 27:5894-5903.

http://dx.doi.org/10.1038/onc.2008.268

PMid:18836470

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10:942-949.

http://dx.doi.org/10.1038/nm1093

PMid:15322536

Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ: Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003, 170:1257-1266.

PMid:12538684

Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004, 64:7022-7029.

http://dx.doi.org/10.1158/0008-5472.CAN-04-1449

PMid:15466195

Zhou Y, Tang L, Lin M, Xu S, Bai J, Song H: Expression of Cytotoxic T-Lymphocyte Antigen 4 on CD4+ and CD8+ T Cells Is Increased in Acute Lung Injury. DNA Cell Biol 2013.

Merad M, Manz MG: Dendritic cell homeostasis. Blood 2009, 113:3418-3427.

http://dx.doi.org/10.1182/blood-2008-12-180646

PMid:19176316 PMCid:PMC2668851

Degli-Esposti MA, Smyth MJ: Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005, 5:112-124.

http://dx.doi.org/10.1038/nri1549

PMid:15688039

Taylor PR, Gordon S: Monocyte heterogeneity and innate immunity. Immunity 2003, 19:2-4.

http://dx.doi.org/10.1016/S1074-7613(03)00178-X

Steinman RM: The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 2003, 51:59-60.

http://dx.doi.org/10.1016/S0369-8114(03)00096-8

Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A: Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 2001, 31:3388-3393.

http://dx.doi.org/10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q

Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC: Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 1998, 160:4587-4595.

PMid:9574566

Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000, 1:510-514.

http://dx.doi.org/10.1038/82763

PMid:11101873

Iwamoto S, Iwai S, Tsujiyama K, Kurahashi C, Takeshita K, Naoe M, Masunaga A, Ogawa Y, Oguchi K, Miyazaki A: TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol 2007, 179:1449-1457.

PMid:17641010

Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK: TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 2003, 171:2262-2269.

PMid:12928370

Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L: The origin and function of tumor-associated macrophages. Immunol Today 1992, 13:265-270.

http://dx.doi.org/10.1016/0167-5699(92)90008-U

Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23:549-555.

http://dx.doi.org/10.1016/S1471-4906(02)02302-5

Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, et al.: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003, 198:1391-1402.

http://dx.doi.org/10.1084/jem.20030267

PMid:14597738 PMCid:PMC2194248

De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8:211-226.

http://dx.doi.org/10.1016/j.ccr.2005.08.002

PMid:16169466

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, et al.: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612-616.

http://dx.doi.org/10.1126/science.1175202

PMid:19644120 PMCid:PMC2803111

Morita Y, Moriai T, Takiyama Y, Makino I: Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 1998, 23:41-50.

PMid:9520090

Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A: Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 2004, 14:155-160.

http://dx.doi.org/10.1016/j.semcancer.2003.10.001

PMid:15246050

Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G, De Baetselier P: Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 2006, 211:487-501.

http://dx.doi.org/10.1016/j.imbio.2006.06.002

PMid:16920488

Condeelis J, Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006, 124:263-266.

http://dx.doi.org/10.1016/j.cell.2006.01.007

PMid:16439202

Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001, 193:727-740.

http://dx.doi.org/10.1084/jem.193.6.727

PMid:11257139 PMCid:PMC2193412

Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J: Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007, 67:2649-2656.

http://dx.doi.org/10.1158/0008-5472.CAN-06-1823

PMid:17363585

Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006, 66:605-612.

http://dx.doi.org/10.1158/0008-5472.CAN-05-4005

PMid:16423985

Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006, 203:2691-2702.

http://dx.doi.org/10.1084/jem.20061104

PMid:17101732 PMCid:PMC2118163

Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009, 58:49-59.

http://dx.doi.org/10.1007/s00262-008-0523-4

PMid:18446337 PMCid:PMC3401888

Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008, 135:234-243.

http://dx.doi.org/10.1053/j.gastro.2008.03.020

PMid:18485901

Ochoa AC, Zea AH, Hernandez C, Rodriguez PC: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007, 13:721s-726s.

http://dx.doi.org/10.1158/1078-0432.CCR-06-2197

PMid:17255300

Kusmartsev SA, Li Y, Chen SH: Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000, 165:779-785.

PMid:10878351

Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H: The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007, 67:425; author reply 426.

http://dx.doi.org/10.1158/0008-5472.CAN-06-3037

PMid:17210725 PMCid:PMC1941787

Nagaraj S, Gabrilovich DI: Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 2008, 68:2561-2563.

http://dx.doi.org/10.1158/0008-5472.CAN-07-6229

PMid:18413722

Schmielau J, Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 2001, 61:4756-4760.

PMid:11406548

Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001, 166:678-689.

PMid:11123353

Rodriguez PC, Ochoa AC: T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol 2006, 16:66-72.

http://dx.doi.org/10.1016/j.semcancer.2005.10.001

PMid:16298138

Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 2004, 53:64-72.

http://dx.doi.org/10.1007/s00262-003-0443-2

PMid:14593498

Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006, 66:1123-1131.

http://dx.doi.org/10.1158/0008-5472.CAN-05-1299

PMid:16424049

Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007, 179:977-983.

PMid:17617589

Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996, 2:1096-1103.

http://dx.doi.org/10.1038/nm1096-1096

PMid:8837607

Melani C, Chiodoni C, Forni G, Colombo MP: Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 2003, 102:2138-2145.

http://dx.doi.org/10.1182/blood-2003-01-0190

PMid:12750171

Zou W, Machelon V, Coulomb-L'Hermin A, Borvak J, Nome F, Isaeva T, Wei S, Krzysiek R, Durand-Gasselin I, Gordon A, et al.: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001, 7:1339-1346.

http://dx.doi.org/10.1038/nm1201-1339

PMid:11726975

Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, et al.: CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005, 65:465-472.

PMid:15695388

Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410:50-56.

http://dx.doi.org/10.1038/35065016

PMid:11242036

Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6:409-421.

http://dx.doi.org/10.1016/j.ccr.2004.08.031

PMid:15488763

Horst AK, Bickert T, Brewig N, Ludewig P, van Rooijen N, Schumacher U, Beauchemin N, Ito WD, Fleischer B, Wagener C, et al.: CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood 2009, 113:6726-6736.

http://dx.doi.org/10.1182/blood-2008-10-184556

PMid:19273835

Palmowski M, Salio M, Dunbar RP, Cerundolo V: The use of HLA class I tetramers to design a vaccination strategy for melanoma patients. Immunol Rev 2002, 188:155-163.

http://dx.doi.org/10.1034/j.1600-065X.2002.18814.x

PMid:12445289

Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V: Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 1998, 188:1641-1650.

http://dx.doi.org/10.1084/jem.188.9.1641

PMid:9802976 PMCid:PMC2212507

Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX: Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004, 5:141-149.

http://dx.doi.org/10.1038/ni1029

PMid:14704792

Inagaki A, Ishida T, Ishii T, Komatsu H, Iida S, Ding J, Yonekura K, Takeuchi S, Takatsuka Y, Utsunomiya A, et al.: Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and -10 levels are significant unfavorable prognostic factors. Int J Cancer 2006, 118:3054-3061.

http://dx.doi.org/10.1002/ijc.21688

PMid:16425276

Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007, 25:911-920.

http://dx.doi.org/10.1038/nbt1323

PMid:17664940

Kaser A, Winklmayr M, Lepperdinger G, Kreil G: The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep 2003, 4:469-473.

http://dx.doi.org/10.1038/sj.embor.embor830

PMid:12728244 PMCid:PMC1319185

Shojaei F, Singh M, Thompson JD, Ferrara N: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 2008, 105:2640-2645.

http://dx.doi.org/10.1073/pnas.0712185105

PMid:18268320 PMCid:PMC2268189

Shojaei F, Zhong C, Wu X, Yu L, Ferrara N: Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 2008, 18:372-378.

http://dx.doi.org/10.1016/j.tcb.2008.06.003

PMid:18614368

Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 2009, 106:6742-6747.

http://dx.doi.org/10.1073/pnas.0902280106

PMid:19346489 PMCid:PMC2665197

Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, et al.: Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000, 342:525-533.

http://dx.doi.org/10.1056/NEJM200002243420801

PMid:10684910

Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001, 7:1194-1201.

http://dx.doi.org/10.1038/nm1101-1194

PMid:11689883

Rafii S, Lyden D, Benezra R, Hattori K, Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002, 2:826-835.

http://dx.doi.org/10.1038/nrc925

PMid:12415253

Bertolini F, Shaked Y, Mancuso P, Kerbel RS: The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006, 6:835-845.

http://dx.doi.org/10.1038/nrc1971

PMid:17036040

Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V: Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008, 319:195-198.

http://dx.doi.org/10.1126/science.1150224

PMid:18187653

Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438:820-827.

http://dx.doi.org/10.1038/nature04186

PMid:16341007 PMCid:PMC2945882

Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, et al.: Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005, 115:2363-2372.

http://dx.doi.org/10.1172/JCI23874

PMid:16138190 PMCid:PMC1193872

Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K: Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276:1423-1425.

http://dx.doi.org/10.1126/science.276.5317.1423

PMid:9162011

Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, et al.: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999, 154:385-394.

http://dx.doi.org/10.1016/S0002-9440(10)65285-6

Kerjaschki D: The crucial role of macrophages in lymphangiogenesis. J Clin Invest 2005, 115:2316-2319.

http://dx.doi.org/10.1172/JCI26354

PMid:16138185 PMCid:PMC1193892

Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, et al.: Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 2008, 68:1100-1109.

http://dx.doi.org/10.1158/0008-5472.CAN-07-2572

PMid:18281485

Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006, 95:272-281.

http://dx.doi.org/10.1038/sj.bjc.6603240

PMid:16832418 PMCid:PMC2360657

Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, Morishita Y, Yashiro M, Hirakawa K, Kaminishi M, et al.: Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 2007, 67:10181-10189.

http://dx.doi.org/10.1158/0008-5472.CAN-07-2366

PMid:17974958

Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007, 7:41-51.

http://dx.doi.org/10.1038/nri1995

PMid:17186030

Dey R, Ji K, Liu Z, Chen L: A cytokine-cytokine interaction in the assembly of higher-order structure and activation of the interleukine-3:receptor complex. PLoS One 2009, 4:e5188.

http://dx.doi.org/10.1371/journal.pone.0005188

PMid:19352505 PMCid:PMC2662821

Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS: Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol 2004, 16:395-404.

http://dx.doi.org/10.1093/intimm/dxh042

PMid:14978013

Okada E, Yamazaki M, Tanabe M, Takeuchi T, Nanno M, Oshima S, Okamoto R, Tsuchiya K, Nakamura T, Kanai T, et al.: IL-7 exacerbates chronic colitis with expansion of memory IL-7Rhigh CD4+ mucosal T cells in mice. Am J Physiol Gastrointest Liver Physiol 2005, 288:G745-754.

http://dx.doi.org/10.1152/ajpgi.00276.2004

PMid:15550560

Andersson A, Yang SC, Huang M, Zhu L, Kar UK, Batra RK, Elashoff D, Strieter RM, Dubinett SM, Sharma S: IL-7 promotes CXCR3 ligand-dependent T cell antitumor reactivity in lung cancer. J Immunol 2009, 182:6951-6958.

http://dx.doi.org/10.4049/jimmunol.0803340

PMid:19454692

Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009, 15:527-538.

http://dx.doi.org/10.1016/j.ccr.2009.04.010

PMid:19477431 PMCid:PMC2846696

Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M, Constantinescu SN, Knoops L, Renauld JC: Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers. J Biol Chem 2009, 284:6773-6781.

http://dx.doi.org/10.1074/jbc.M807531200

PMid:19139102 PMCid:PMC2652315

Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al.: gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009, 15:91-102.

http://dx.doi.org/10.1016/j.ccr.2009.01.002

PMid:19185844

Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A: Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 2006, 17:173-188.

http://dx.doi.org/10.1016/j.cytogfr.2006.01.004

PMid:16540365

Correia MP, Cardoso EM, Pereira CF, Neves R, Uhrberg M, Arosa FA: Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation. J Immunol 2009, 182:6149-6159.

http://dx.doi.org/10.4049/jimmunol.0802470

PMid:19414768

Laurence A, Astoul E, Hanrahan S, Totty N, Cantrell D: Identification of pro-interleukin 16 as a novel target of MAP kinases in activated T lymphocytes. Eur J Immunol 2004, 34:587-597.

http://dx.doi.org/10.1002/eji.200324598

PMid:14768064

Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009, 206:1457-1464.

http://dx.doi.org/10.1084/jem.20090207

PMid:19564351 PMCid:PMC2715087

Sattler A, Wagner U, Rossol M, Sieper J, Wu P, Krause A, Schmidt WA, Radmer S, Kohler S, Romagnani C, et al.: Cytokine-induced human IFN-gamma-secreting effector-memory Th cells in chronic autoimmune inflammation. Blood 2009, 113:1948-1956.

http://dx.doi.org/10.1182/blood-2008-02-139147

PMid:19104082

Chada S, Bocangel D, Ramesh R, Grimm EA, Mumm JB, Mhashilkar AM, Zheng M: mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther 2005, 11:724-733.

http://dx.doi.org/10.1016/j.ymthe.2004.12.021

PMid:15851011

Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I, Murata K, Imaizumi Y, Tsukasaki K, Tsuruda K, et al.: High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett 2007, 256:196-206.

http://dx.doi.org/10.1016/j.canlet.2007.06.001

PMid:17624663

Ziesche E, Bachmann M, Kleinert H, Pfeilschifter J, Muhl H: The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 2007, 282:16006-16015.

http://dx.doi.org/10.1074/jbc.M611040200

PMid:17438334

Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253-268.

http://dx.doi.org/10.1038/nri3175

PMid:22437938 PMCid:PMC3587148

Mussai F, De Santo C, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM, Qureshi A, Dazzi F, Vyas P, Cerundolo V: Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 2013, 122:749-758.

http://dx.doi.org/10.1182/blood-2013-01-480129

PMid:23733335 PMCid:PMC3731930




DOI: http://dx.doi.org/10.14259%2For.v1i1.79

Refbacks

  • There are currently no refbacks.