Open Journal Systems

Cover Image

Targeting of both PI3K/Akt/mTOR pathway and mutant EGFR to overcome resistance to tyrosine kinase inhibitors in mutant EGFR-mediated lung cancer

Xiaoling Song

Abstract


Lung cancer is a leading cause of cancer-related death worldwide and in the United States. Targeted therapy of treating mutant Epidermal Growth Factor Receptor (EGFR) mediated lung cancer with tyrosine kinase inhibitors (TKI) has greatly improved clinical response. However, these lung tumors inevitably develop resistance to these TKI drugs within a year, which restricts the improvement in treatment outcome. Identified resistant mechanisms include acquiring a secondary T790M resistant mutation on EGFR, PI3KCA mutation, amplification of MET tyrosine receptor or overexpression of MET ligand HGF. Almost all of these resistant mechanisms relate to a sustained activation of phosphatidylinositol 3-kinase (PI3K)/ Akt pathway in tumors cells in the presence of EGFR TKIs. Studies showed that inhibitors of PI3K/mTOR pathway regulated the growth of EGFR TKI-sensitive mutant lung cancer cell lines and potentiate or enhance the effect of irreversible EGFR TKIs on growth inhibition in resistant EGFR mutant lung cancer cell lines and in xenograft model. Data reviewed in this literature suggested the combined treatment of PI3K/mTOR inhibitor with EGFR TKI provides a promising way to overcome of EGFR TKI resistant and improve therapeutic outcome.


Keywords


EGFR mutant lung cancer, TKI resistance, PI3K/AKT pathway, mTOR inhibitor, tumor regression

Full Text:

PDF PDF plus HTML

References


United State Department of Health and Human Services. National Institutes of Health.National Cancer Institute. SEER Cancer Statistics Review (CSR)1975-2010. http://seer.cancer.gov/statfacts/html/lungb.html 2013.

Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004, 350:2129-2139.

PMid:15118073

Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al.: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304:1497-1500.

http://dx.doi.org/10.1126/science.1099314

PMid:15118125

Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al.: EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004, 101:13306-13311.

http://dx.doi.org/10.1073/pnas.0405220101

PMid:15329413 PMCid:PMC516528

Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, Bulmer SE, Frank DA, Hahn WC, Sellers WR, et al.: Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005, 2:e313.

http://dx.doi.org/10.1371/journal.pmed.0020313

PMid:16187797 PMCid:PMC1240052

Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ: Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007, 11:217-227.

http://dx.doi.org/10.1016/j.ccr.2006.12.017

PMid:17349580 PMCid:PMC1939942

Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, Mahmood U, Mitchell A, Sun Y, Al-Hashem R, et al.: The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006, 9:485-495.

http://dx.doi.org/10.1016/j.ccr.2006.04.022

PMid:16730237

Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE: Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006, 20:1496-1510.

http://dx.doi.org/10.1101/gad.1417406

PMid:16705038 PMCid:PMC1475762

Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, et al.: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010, 362:2380-2388.

http://dx.doi.org/10.1056/NEJMoa0909530

PMid:20573926

Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al.: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009, 361:947-957.

http://dx.doi.org/10.1056/NEJMoa0810699

PMid:19692680

Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM, Naumov GN, Yeap BY, Jarrell E, Sun J, et al.: Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 2006, 116:2695-2706.

http://dx.doi.org/10.1172/JCI28656

PMid:16906227 PMCid:PMC1570180

Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, et al.: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011, 3:75ra26.

http://dx.doi.org/10.1126/scitranslmed.3002003

PMid:21430269 PMCid:PMC3132801

Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, et al.: Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010, 17:77-88.

http://dx.doi.org/10.1016/j.ccr.2009.11.022

PMid:20129249 PMCid:PMC2980857

Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, et al.: MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 2007, 104:20932-20937.

http://dx.doi.org/10.1073/pnas.0710370104

PMid:18093943 PMCid:PMC2409244

Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al.: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316:1039-1043.

http://dx.doi.org/10.1126/science.1141478

PMid:17463250

Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T, Ogino H, Kakiuchi S, Hanibuchi M, Nishioka Y, et al.: Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 2008, 68:9479-9487.

http://dx.doi.org/10.1158/0008-5472.CAN-08-1643

PMid:19010923

Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2003, 2:222-232.

http://dx.doi.org/10.4161/cbt.2.3.360

PMid:12878853

Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR: Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005, 65:7052-7058.

http://dx.doi.org/10.1158/0008-5472.CAN-05-0917

PMid:16103051

Lee H, Kim SJ, Jung KH, Son MK, Yan HH, Hong S, Hong SS: A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 2013.

Sano T, Takeuchi S, Nakagawa T, Ishikawa D, Nanjo S, Yamada T, Nakamura T, Matsumoto K, Yano S: The novel phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor, BEZ235, circumvents erlotinib resistance of epidermal growth factor receptor mutant lung cancer cells triggered by hepatocyte growth factor. Int J Cancer 2013, 133:505-513.

http://dx.doi.org/10.1002/ijc.28034

PMid:23319394

Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, Maira SM, Hackl W, Camp R, Kluger HM, Chao HH: Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One 2012, 7:e31331.

http://dx.doi.org/10.1371/journal.pone.0031331

PMid:22355357 PMCid:PMC3280285

Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, Fingar DC, Roux PP: ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem 2011, 286:567-577.

http://dx.doi.org/10.1074/jbc.M110.159046

PMid:21071439 PMCid:PMC3013016

Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K, Liang MC, Perera SA, Zaghlul S, Borgman CL, et al.: Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 2007, 12:81-93.

http://dx.doi.org/10.1016/j.ccr.2007.06.005

PMid:17613438

Shimamura T, Li D, Ji H, Haringsma HJ, Liniker E, Borgman CL, Lowell AM, Minami Y, McNamara K, Perera SA, et al.: Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res 2008, 68:5827-5838.

http://dx.doi.org/10.1158/0008-5472.CAN-07-5428

PMid:18632637 PMCid:PMC3272303

Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, Iwata KK, Gibson NW, Griffin G: Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006, 5:2676-2684.

http://dx.doi.org/10.1158/1535-7163.MCT-06-0166

PMid:17121914

Yamada T, Takeuchi S, Fujita N, Nakamura A, Wang W, Li Q, Oda M, Mitsudomi T, Yatabe Y, Sekido Y, et al.: Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations. Oncogene 2013, 32:4427-4435.

http://dx.doi.org/10.1038/onc.2012.446

PMid:23045273

Ishikawa D, Takeuchi S, Nakagawa T, Sano T, Nakade J, Nanjo S, Yamada T, Ebi H, Zhao L, Yasumoto K, et al.: mTOR Inhibitors Control the Growth of EGFR Mutant Lung Cancer Even after Acquiring Resistance by HGF. PLoS One 2013, 8:e62104.

http://dx.doi.org/10.1371/journal.pone.0062104

PMid:23690929 PMCid:PMC3653905

Donev IS, Wang W, Yamada T, Li Q, Takeuchi S, Matsumoto K, Yamori T, Nishioka Y, Sone S, Yano S: Transient PI3K inhibition induces apoptosis and overcomes HGF-mediated resistance to EGFR-TKIs in EGFR mutant lung cancer. Clin Cancer Res 2011, 17:2260-2269.

http://dx.doi.org/10.1158/1078-0432.CCR-10-1993

PMid:21220474

Jiang Y, Zhang Y, Luan J, Duan H, Zhang F, Yagasaki K, Zhang G: Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action. Cytotechnology 2010, 62:573-583.

http://dx.doi.org/10.1007/s10616-010-9310-0

PMid:20963488 PMCid:PMC2995143

Kang XH, Xu ZY, Gong YB, Wang LF, Wang ZQ, Xu L, Cao F, Liao MJ: Bufalin Reverses HGF-Induced Resistance to EGFR-TKIs in EGFR Mutant Lung Cancer Cells via Blockage of Met/PI3k/Akt Pathway and Induction of Apoptosis. Evid Based Complement Alternat Med 2013, 2013:243859.

Zhu Z, Sun H, Ma G, Wang Z, Li E, Liu Y, Liu Y: Bufalin Induces Lung Cancer Cell Apoptosis via the Inhibition of PI3K/Akt Pathway. Int J Mol Sci 2012, 13:2025-2035.

http://dx.doi.org/10.3390/ijms13022025

PMid:22408435 PMCid:PMC3292004

Choi YJ, Rho JK, Jeon BS, Choi SJ, Park SC, Lee SS, Kim HR, Kim CH, Lee JC: Combined inhibition of IGFR enhances the effects of gefitinib in H1650: a lung cancer cell line with EGFR mutation and primary resistance to EGFR-TK inhibitors. Cancer Chemother Pharmacol 2010, 66:381-388.

http://dx.doi.org/10.1007/s00280-009-1174-7

PMid:19921194

Kim SM, Yun MR, Hong YK, Solca F, Kim JH, Kim HJ, Cho BC: Glycolysis Inhibition Sensitizes Non-Small Cell Lung Cancer with T790M Mutation to Irreversible EGFR Inhibitors via Translational Suppression of Mcl-1 by AMPK Activation. Mol Cancer Ther 2013.

http://dx.doi.org/10.1158/1535-7163.MCT-12-1188

Clinical trails on combinatory inhibition of PI3K/AKT/mTOR pathway with EGFR TKIs in non-small cell lung cancer. 2013. [Online]. Available: http://www.trialsunited.com.

Clinical trails on combinatory inhibition of PI3K/AKT/mTOR pathway with EGFR TKIs in non-small cell lung cancer. 2013. [Online] Available: http://clinicaltrials.gov.

Boehringer Ingelheim: U.S. FDA approves Gilotrifâ„¢ (afatinib)* as first-line treatment for lung cancer patients with EGFR mutations. http://www.boehringer-ingelheim.com/news/news_releases/press_releases/2013/15_july_2013_oncology.html 2013.

Jay A. Friedman RD, Sheila Miknyoczki, Mangeng Cheng, Robert Hudkins, Bruce Dorsey, Mark Ator, Thelma Angeles, Bruce Ruggeri, Elizabeth Bruckheimer. : Antitumor activity of the dual AXL/c-Met inhibitor CEP-40783 in Champions primary TumorGraftâ„¢ models of human non-small cell lung cancer (NSCLC). AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics #C272. October 19-23, 2013. Boston, MA.

Schoeberl B, Faber AC, Li D, Liang MC, Crosby K, Onsum M, Burenkova O, Pace E, Walton Z, Nie L, et al.: An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 2010, 70:2485-2494.

http://dx.doi.org/10.1158/0008-5472.CAN-09-3145

PMid:20215504 PMCid:PMC2840205




DOI: http://dx.doi.org/10.14259%2For.v1i1.81

Refbacks

  • There are currently no refbacks.