Open Journal Systems

Cover Image

Lipid metabolism in mammary neoplasia and potential therapeutic targets

Ashlyn Williams, Lindsey Crawford, Amit K Tiwari, Temesgen Samuel, Gemechu Wirtu DVM, PhD

Abstract


Benign and malignant mammary neoplasias are common in women and domestic dogs and cats. Dogs and cats share (more so than rodent models) many of the risk factors, including increased incidence with age, for spontaneous mammary neoplasia. Dogs are affected by both benign and malignant types of tumors while in cats malignant neoplasms are the most common. Human mammary neoplasia is characterized by altered lipid metabolism. For example, the expression of fatty acid synthase (named oncogene antigen, OA 519) was identified as a marker for aggressive human breast cancer more than two decades ago. Considering lipogenesis is enhanced in breast and other types of cancer, many have suggested on the need to develop inhibitors of selected steps along the lipogenetic pathway as targets for chemotherapy. Several such agents are at different phases of development. The objective of this review is to provide an overview of lipid synthesis in normal and neoplastic mammary glands and potential chemotherapeutic targets affecting lipid metabolism. We conclude by suggesting the use of dogs and cats as animal models may hasten the development of therapeutic approaches.


Keywords


lipid metabolism, mammary cancer, fatty acid synthesis, lipogenesis,

Full Text:

PDF HTML

References


American Cancer Society: Breast cancer facts & figures 2011-2012. . Edited by. Atlanta, GA: : American Cancer Society, Inc.; 2011.

Sleeckx N, de Rooster H, Veldhuis Kroeze EJ, Van Ginneken C, Van Brantegem L: Canine mammary tumours, an overview. Reprod Domest Anim 2011, 46:1112-1131.

http://dx.doi.org/10.1111/j.1439-0531.2011.01816.x

PMid:21645126

Schneider R: Comparison of age, sex, and incidence rates in human and canine breast cancer. Cancer 1970, 26:419-426.

http://dx.doi.org/10.1002/1097-0142(197008)26:2<419::AID-CNCR2820260225>3.0.CO;2-U

Rosenthal RC: The Merck Veterinary Manual Online. In Overview of Mammary Tumors. Edited by Aiello SE, Mosses MA. Whitehouse Station, N.J., U.S.A.: Merck Sharp & Dohme Corp.,; 2013.

Zappulli V, Caliari D, Rasotto R, Ferro S, Castagnaro M, Goldschmidt M: Proposed Classification of the Feline "Complex" Mammary Tumors as Ductal and Intraductal Papillary Mammary Tumors. Vet Pathol 2013.

Maniscalco L, Millan Y, Iussich S, Denina M, Sanchez-Cespedes R, Gattino F, Biolatti B, Sasaki N, Nakagawa T, Di Renzo MF, et al.: Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas. BMC Vet Res 2013, 9:80.

http://dx.doi.org/10.1186/1746-6148-9-80

PMid:23587222 PMCid:PMC3637810

Misdorp W, Weijer K: Animal model of human disease: breast cancer. Am J Pathol 1980, 98:573-576.

PMid:6986788 PMCid:PMC1903412

Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A, Castle J, Palombo F, Viti V, Mesiti G, Zappulli V, et al.: Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics 2009, 10:135.

http://dx.doi.org/10.1186/1471-2164-10-135

PMid:19327144 PMCid:PMC2670324

Young CD, Anderson SM: Sugar and fat - that's where it's at: metabolic changes in tumors. Breast Cancer Res 2008, 10:202.

http://dx.doi.org/10.1186/bcr1852

PMid:18304378 PMCid:PMC2374962

Vander Heiden MG: Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011, 10:671-684.

http://dx.doi.org/10.1038/nrd3504

PMid:21878982

Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.

http://dx.doi.org/10.1016/j.cell.2011.02.013

PMid:21376230

Iacopetta D, Lappano R, Cappello AR, Madeo M, De Francesco EM, Santoro A, Curcio R, Capobianco L, Pezzi V, Maggiolini M, et al.: SLC37A1 gene expression is up-regulated by epidermal growth factor in breast cancer cells. Breast Cancer Res Treat 2010, 122:755-764.

http://dx.doi.org/10.1007/s10549-009-0620-x

PMid:19894109

Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, et al.: Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 2011, 71:3236-3245.

http://dx.doi.org/10.1158/0008-5472.CAN-10-3894

PMid:21415164

Kuhajda FP, Piantadosi S, Pasternack GR: Haptoglobin-related protein (Hpr) epitopes in breast cancer as a predictor of recurrence of the disease. N Engl J Med 1989, 321:636-641.

http://dx.doi.org/10.1056/NEJM198909073211003

PMid:2475778

Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR: Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 1994, 91:6379-6383.

http://dx.doi.org/10.1073/pnas.91.14.6379

PMid:8022791 PMCid:PMC44205

Panten U, Willenborg M, Schumacher K, Hamada A, Ghaly H, Rustenbeck I: Acute metabolic amplification of insulin secretion in mouse islets is mediated by mitochondrial export of metabolites, but not by mitochondrial energy generation. Metabolism 2013.

http://dx.doi.org/10.1016/j.metabol.2013.05.006

PMid:23790612

Santos CR, Schulze A: Lipid metabolism in cancer. FEBS J 2012, 279:2610-2623.

http://dx.doi.org/10.1111/j.1742-4658.2012.08644.x

PMid:22621751

Tucker SC, Honn KV: Emerging targets in lipid-based therapy. Biochem Pharmacol 2013, 85:673-688.

http://dx.doi.org/10.1016/j.bcp.2012.11.028

PMid:23261527

Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D, Sierra A: The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy. PLoS One 2012, 7:e46456.

http://dx.doi.org/10.1371/journal.pone.0046456

PMid:23082122 PMCid:PMC3474759

Schiffmann S, Sandner J, Birod K, Wobst I, Angioni C, Ruckhaberle E, Kaufmann M, Ackermann H, Lotsch J, Schmidt H, et al.: Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 2009, 30:745-752.

http://dx.doi.org/10.1093/carcin/bgp061

PMid:19279183

Al-Saffar NM, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR, Leach MO, Workman P, Lacal JC, Judson IR, et al.: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res 2006, 66:427-434.

http://dx.doi.org/10.1158/0008-5472.CAN-05-1338

PMid:16397258

Mashima T, Seimiya H, Tsuruo T: De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 2009, 100:1369-1372.

http://dx.doi.org/10.1038/sj.bjc.6605007

PMid:19352381 PMCid:PMC2694429

Plathow C, Weber WA: Tumor cell metabolism imaging. J Nucl Med 2008, 49 Suppl 2:43S-63S.

http://dx.doi.org/10.2967/jnumed.107.045930

PMid:18523065

Zhang F, Du G: Dysregulated lipid metabolism in cancer. World J Biol Chem 2012, 3:167-174.

http://dx.doi.org/10.4331/wjbc.v3.i8.167

PMid:22937213 PMCid:PMC3430731

Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA: Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 2000, 97:3450-3454.

http://dx.doi.org/10.1073/pnas.97.7.3450

PMid:10716717 PMCid:PMC16260

Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA, Kuhajda FP: Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 2000, 60:213-218.

PMid:10667561

Dowling S, Cox J, Cenedella RJ: Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in d. Lipids 2009, 44:489-498.

http://dx.doi.org/10.1007/s11745-009-3298-2

PMid:19381703

Menendez JA, Vellon L, Lupu R: Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann Oncol 2005, 16:1253-1267.

http://dx.doi.org/10.1093/annonc/mdi239

PMid:15870086

Jin Q, Yuan LX, Boulbes D, Baek JM, Wang YN, Gomez-Cabello D, Hawke DH, Yeung SC, Lee MH, Hortobagyi GN, et al.: Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res 2010, 12:R96.

http://dx.doi.org/10.1186/bcr2777

PMid:21080941 PMCid:PMC3046439

Seyfried TN, Shelton LM: Cancer as a metabolic disease. Nutr Metab (Lond) 2010, 7:7.

http://dx.doi.org/10.1186/1743-7075-7-7

PMid:20181022 PMCid:PMC2845135

Grabacka M, Pierzchalska M, Reiss K: Peroxisome proliferator activated receptor alpha ligands as anticancer drugs targeting mitochondrial metabolism. Curr Pharm Biotechnol 2013, 14:342-356.

http://dx.doi.org/10.2174/1389201011314030009

PMid:21133850 PMCid:PMC3631438

Bionaz M, Loor JJ: Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008, 9:366.

http://dx.doi.org/10.1186/1471-2164-9-366

PMid:18671863 PMCid:PMC2547860

Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, Bauman DE, Anderson SM, Neville MC: Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab 2010, 299:E918-927.

http://dx.doi.org/10.1152/ajpendo.00376.2010

PMid:20739508 PMCid:PMC3006251

Aft RL, Zhang FW, Gius D: Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 2002, 87:805-812.

http://dx.doi.org/10.1038/sj.bjc.6600547

PMid:12232767 PMCid:PMC2364258

Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, Hui H, Lu N, Guo QL: Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 2013, 4:e601.

http://dx.doi.org/10.1038/cddis.2013.131

PMid:23598413 PMCid:PMC3641353

Sun RC, Board PG, Blackburn AC: Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol Cancer 2011, 10:142.

http://dx.doi.org/10.1186/1476-4598-10-142

PMid:22093145 PMCid:PMC3240126

Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, Thor AD: Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009, 8:2031-2040.

http://dx.doi.org/10.4161/cc.8.13.8814

PMid:19440038

Kurebayashi J, Otsuki T, Kurosumi M, Soga S, Akinaga S, Sonoo H: A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res 2001, 92:1342-1351.

http://dx.doi.org/10.1111/j.1349-7006.2001.tb02159.x

PMid:11749701

Delepine NA, Cornille H, Askhallaf S, Baronzio GF, Schwartz L: Tolerance of oral lipoid acid and hydroxycitrate combination in cancer patients: first approach of the cancer metabolism research group. In Cancer Research. Edited by. Chicago, IL: American Association for Cancer Research; 2012. vol 72, Issue 8, Supplement 1.]

Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005, 8:311-321.

http://dx.doi.org/10.1016/j.ccr.2005.09.008

PMid:16226706

Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV: Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 2007, 67:8180-8187.

http://dx.doi.org/10.1158/0008-5472.CAN-07-0389

PMid:17804731

Sumida K, Kaneko H, Yoshitake A: Inhibition of animal acetyl-coenzyme A carboxylase by 2-(p-chlorophenoxy)-2-methylpropionic acid and 2-ethylhexanoic acid. Chemosphere 1996, 33:2201-2207.

http://dx.doi.org/10.1016/0045-6535(96)00331-1

Lee JS, Lee MS, Oh WK, Sul JY: Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 2009, 32:1427-1432.

http://dx.doi.org/10.1248/bpb.32.1427

PMid:19652385

Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, Pizer ES: Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 2001, 61:1493-1499.

PMid:11245456

Upadhyay AK, Singh S, Chhipa RR, Vijayakumar MV, Ajay AK, Bhat MK: Methyl-beta-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: involvement of Akt, NF-kappaB and Bcl-2. Toxicol Appl Pharmacol 2006, 216:177-185.

http://dx.doi.org/10.1016/j.taap.2006.05.009

PMid:16806341

Stover TC, Sharma A, Robertson GP, Kester M: Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 2005, 11:3465-3474.

http://dx.doi.org/10.1158/1078-0432.CCR-04-1770

PMid:15867249

Lim KG, Sun C, Bittman R, Pyne NJ, Pyne S: (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: Effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 2011, 23:1590-1595.

http://dx.doi.org/10.1016/j.cellsig.2011.05.010

PMid:21620961 PMCid:PMC3148273




DOI: http://dx.doi.org/10.14259%2Fcs.v1i2.67

Refbacks

  • There are currently no refbacks.