
Autophagy in COPD
Abstract
Autophagy is an important cellular homeostatic process, where cell self-degrades long-lived proteins and damaged sub cellular organelles and proteins with the help of lysosomes in eukaryotic cells. In the past decade, remarkable advances have been made describing autophagy as clinically relevant target to the treatment of pulmonary diseases. In this review I attempt to provide an overview of autophagy signaling pathway and also summarize the recent studies that relate the importance and role of autophagic pathway in the Chronic Obstructive Pulmonary Disease.Â
Keywords
Full Text:
PDFReferences
Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
http://dx.doi.org/10.1016/j.cell.2007.12.018
PMid:18191218 PMCid:PMC2696814
Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013, 368:1845-1846.
http://dx.doi.org/10.1056/NEJMra1205406
Kroemer G, Marino G, Levine B: Autophagy and the integrated stress response. Mol Cell 2010, 40:280-293.
http://dx.doi.org/10.1016/j.molcel.2010.09.023
PMid:20965422 PMCid:PMC3127250
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al.: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010, 90:1383-1435.
http://dx.doi.org/10.1152/physrev.00030.2009
PMid:20959619
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N: The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
http://dx.doi.org/10.1038/nature03029
PMid:15525940
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB: Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120:237-248.
http://dx.doi.org/10.1016/j.cell.2004.11.046
PMid:15680329
Ryter SW, Lee SJ, Smith A, Choi AM: Autophagy in vascular disease. Proc Am Thorac Soc 2010, 7:40-47.
http://dx.doi.org/10.1513/pats.200909-100JS
PMid:20160147 PMCid:PMC3137148
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF: BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007, 27:6229-6242.
http://dx.doi.org/10.1128/MCB.02246-06
PMid:17576813 PMCid:PMC1952167
Li Z, Choo-Wing R, Sun H, Sureshbabu A, Sakurai R, Rehan VK, Bhandari V: A potential role of the JNK pathway in hyperoxia-induced cell death, myofibroblast transdifferentiation and TGF-beta1-mediated injury in the developing murine lung. BMC Cell Biol 2011, 12:54.
http://dx.doi.org/10.1186/1471-2121-12-54
PMid:22172122 PMCid:PMC3266206
Tanaka A, Jin Y, Lee SJ, Zhang M, Kim HP, Stolz DB, Ryter SW, Choi AM: Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. Am J Respir Cell Mol Biol 2012, 46:507-514.
http://dx.doi.org/10.1165/rcmb.2009-0415OC
PMid:22095627 PMCid:PMC3359946
Song S, Lee H, Kam TI, Tai ML, Lee JY, Noh JY, Shim SM, Seo SJ, Kong YY, Nakagawa T, et al.: E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity. J Cell Biol 2008, 182:675-684.
http://dx.doi.org/10.1083/jcb.200711066
PMid:18710920 PMCid:PMC2518707
Kang KB, Zhu C, Yong SK, Gao Q, Wong MC: Enhanced sensitivity of celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy. Mol Cancer 2009, 8:66.
http://dx.doi.org/10.1186/1476-4598-8-66
PMid:19706164 PMCid:PMC2741461
Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, et al.: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010, 38:265-279.
http://dx.doi.org/10.1016/j.molcel.2010.04.007
PMid:20417604 PMCid:PMC2867245
Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005, 120:159-162.
PMid:15680321
Kim HP, Wang X, Chen ZH, Lee SJ, Huang MH, Wang Y, Ryter SW, Choi AM: Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 2008, 4:887-895.
PMid:18769149
Ryter SW, Chen ZH, Kim HP, Choi AM: Autophagy in chronic obstructive pulmonary disease: homeostatic or pathogenic mechanism? Autophagy 2009, 5:235-237.
http://dx.doi.org/10.4161/auto.5.2.7495
PMid:19066468
Yang Z, Klionsky DJ: Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010, 22:124-131.
http://dx.doi.org/10.1016/j.ceb.2009.11.014
PMid:20034776 PMCid:PMC2854249
Atlashkin V, Kreykenbohm V, Eskelinen EL, Wenzel D, Fayyazi A, Fischer von Mollard G: Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol Cell Biol 2003, 23:5198-5207.
http://dx.doi.org/10.1128/MCB.23.15.5198-5207.2003
PMid:12861006 PMCid:PMC165714
Gutierrez MG, Munafo DB, Beron W, Colombo MI: Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004, 117:2687-2697.
http://dx.doi.org/10.1242/jcs.01114
PMid:15138286
Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, et al.: ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007, 17:1817-1825.
http://dx.doi.org/10.1016/j.cub.2007.09.032
PMid:17935992
Barnes PJ: Chronic obstructive pulmonary disease. N Engl J Med 2000, 343:269-280.
http://dx.doi.org/10.1056/NEJM200007273430407
PMid:10911010
Barnes PJ: Chronic obstructive pulmonary disease: effects beyond the lungs. PLoS Med 2010, 7:e1000220.
http://dx.doi.org/10.1371/journal.pmed.1000220
PMid:20305715 PMCid:PMC2838746
Agusti A, Barnes PJ: Update in chronic obstructive pulmonary disease 2011. Am J Respir Crit Care Med 2012, 185:1171-1176.
http://dx.doi.org/10.1164/rccm.201203-0505UP
PMid:22661523
Houghton AM: Mechanistic links between COPD and lung cancer. Nat Rev Cancer 2013, 13:233-245.
http://dx.doi.org/10.1038/nrc3477
PMid:23467302
Kirkham PA, Barnes PJ: Oxidative stress in COPD. Chest 2013, 144:266-273.
http://dx.doi.org/10.1378/chest.12-2664
PMid:23880677
Nakahira K, Cloonan S, Mizumura K, Choi AM, Ryter SW: Autophagy: a Crucial Moderator of Redox Balance, Inflammation, and Apoptosis in Lung Disease. Antioxid Redox Signal 2013.
http://dx.doi.org/10.1089/ars.2013.5373
Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, et al.: Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 2008, 3:e3316.
http://dx.doi.org/10.1371/journal.pone.0003316
PMid:18830406 PMCid:PMC2552992
Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee SJ, Ifedigbo E, Parameswaran H, Ryter SW, Choi AM: Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci U S A 2010, 107:18880-18885.
http://dx.doi.org/10.1073/pnas.1005574107
PMid:20956295 PMCid:PMC2973911
Schaberg T, Klein U, Rau M, Eller J, Lode H: Subpopulations of alveolar macrophages in smokers and nonsmokers: relation to the expression of CD11/CD18 molecules and superoxide anion production. Am J Respir Crit Care Med 1995, 151:1551-1558.
http://dx.doi.org/10.1164/ajrccm.151.5.7735614
PMid:7735614
Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R: Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2008, 153:6-20.
http://dx.doi.org/10.1038/sj.bjp.0707395
PMid:17643134 PMCid:PMC2199390
Vernon PJ, Zeh Iii HJ, Lotze MT: The myeloid response to pancreatic carcinogenesis is regulated by the receptor for advanced glycation end-products. Oncoimmunology 2013, 2:e24184.
http://dx.doi.org/10.4161/onci.24184
PMid:23762800 PMCid:PMC3667906
DOI: http://dx.doi.org/10.14259%2Fcs.v1i2.68
Refbacks
- There are currently no refbacks.